Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):217–227. doi: 10.1093/genetics/162.1.217

Identification and analysis of a hyperactive mutant form of Drosophila P-element transposase.

Eileen L Beall 1, Matthew B Mahoney 1, Donald C Rio 1
PMCID: PMC1462248  PMID: 12242235

Abstract

Transposition in many organisms is regulated to control the frequency of DNA damage caused by the DNA breakage and joining reactions. However, genetic studies in prokaryotic systems have led to the isolation of mutant transposase proteins with higher or novel activities compared to those of the wild-type protein. In the course of our study of the effects of mutating potential ATM-family DNA damage checkpoint protein kinase sites in the Drosophila P-element transposase protein, we found one mutation, S129A, that resulted in an elevated level of transposase activity using in vivo recombination assays, including P-element-mediated germline transformation. In vitro assays for P-element transposase activity indicate that the S129A mutant exhibits elevated donor DNA cleavage activity when compared to the wild-type protein, whereas the strand-transfer activity is similar to that of wild type. This difference may reflect the nature of the in vitro assays and that normally in vivo the two reactions may proceed in concert. The P-element transposase protein contains 10 potential consensus phosphorylation sites for the ATM family of PI(3)-related protein kinases. Of these 10 sites, 8 affect transposase activity either positively or negatively when substituted individually with alanine and tested in vivo. A mutant transposase protein that contains all eight N-terminal serine and threonine residues substituted with alanine is inactive and can be restored to full activity by substitution of wild-type amino acids back at only 3 of the 8 positions. These data suggest that the activity of P-element transposase may be regulated by phosphorylation and demonstrate that one mutation, S129A, results in hyperactive transposition.

Full Text

The Full Text of this article is available as a PDF (243.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Banga S. S., Velazquez A., Boyd J. B. P transposition in Drosophila provides a new tool for analyzing postreplication repair and double-strand break repair. Mutat Res. 1991 Jul;255(1):79–88. doi: 10.1016/0921-8777(91)90020-p. [DOI] [PubMed] [Google Scholar]
  3. Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  4. Beall E. L., Rio D. C. Drosophila IRBP/Ku p70 corresponds to the mutagen-sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 1996 Apr 15;10(8):921–933. doi: 10.1101/gad.10.8.921. [DOI] [PubMed] [Google Scholar]
  5. Beall E. L., Rio D. C. Drosophila P-element transposase is a novel site-specific endonuclease. Genes Dev. 1997 Aug 15;11(16):2137–2151. doi: 10.1101/gad.11.16.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M. B., Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998 Sep 11;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  7. Chen J., Alt F. W. Gene rearrangement and B-cell development. Curr Opin Immunol. 1993 Apr;5(2):194–200. doi: 10.1016/0952-7915(93)90004-c. [DOI] [PubMed] [Google Scholar]
  8. Critchlow S. E., Jackson S. P. DNA end-joining: from yeast to man. Trends Biochem Sci. 1998 Oct;23(10):394–398. doi: 10.1016/s0968-0004(98)01284-5. [DOI] [PubMed] [Google Scholar]
  9. Curcio M. J., Garfinkel D. J. New lines of host defense: inhibition of Ty1 retrotransposition by Fus3p and NER/TFIIH. Trends Genet. 1999 Feb;15(2):43–45. doi: 10.1016/s0168-9525(98)01643-6. [DOI] [PubMed] [Google Scholar]
  10. Eggleston W. B., Johnson-Schlitz D. M., Engels W. R. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature. 1988 Jan 28;331(6154):368–370. doi: 10.1038/331368a0. [DOI] [PubMed] [Google Scholar]
  11. Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990 Aug 10;62(3):515–525. doi: 10.1016/0092-8674(90)90016-8. [DOI] [PubMed] [Google Scholar]
  12. Feller S. M., Ren R., Hanafusa H., Baltimore D. SH2 and SH3 domains as molecular adhesives: the interactions of Crk and Abl. Trends Biochem Sci. 1994 Nov;19(11):453–458. doi: 10.1016/0968-0004(94)90129-5. [DOI] [PubMed] [Google Scholar]
  13. Fugmann S. D., Villey I. J., Ptaszek L. M., Schatz D. G. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol Cell. 2000 Jan;5(1):97–107. doi: 10.1016/s1097-2765(00)80406-2. [DOI] [PubMed] [Google Scholar]
  14. Gloor G. B., Moretti J., Mouyal J., Keeler K. J. Distinct P-element excision products in somatic and germline cells of Drosophila melanogaster. Genetics. 2000 Aug;155(4):1821–1830. doi: 10.1093/genetics/155.4.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jimenez G. S., Bryntesson F., Torres-Arzayus M. I., Priestley A., Beeche M., Saito S., Sakaguchi K., Appella E., Jeggo P. A., Taccioli G. E. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature. 1999 Jul 1;400(6739):81–83. doi: 10.1038/21913. [DOI] [PubMed] [Google Scholar]
  16. Jin S., Inoue S., Weaver D. T. Functions of the DNA dependent protein kinase. Cancer Surv. 1997;29:221–261. [PubMed] [Google Scholar]
  17. Johnson L. N., O'Reilly M. Control by phosphorylation. Curr Opin Struct Biol. 1996 Dec;6(6):762–769. doi: 10.1016/s0959-440x(96)80005-4. [DOI] [PubMed] [Google Scholar]
  18. Kennedy A. K., Haniford D. B. Isolation and characterization of IS10 transposase separation of function mutants: identification of amino acid residues in transposase that are important for active site function and the stability of transposition intermediates. J Mol Biol. 1996 Mar 1;256(3):533–547. doi: 10.1006/jmbi.1996.0106. [DOI] [PubMed] [Google Scholar]
  19. Khanna K. K., Jackson S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001 Mar;27(3):247–254. doi: 10.1038/85798. [DOI] [PubMed] [Google Scholar]
  20. Kharbanda S., Pandey P., Jin S., Inoue S., Bharti A., Yuan Z. M., Weichselbaum R., Weaver D., Kufe D. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature. 1997 Apr 17;386(6626):732–735. doi: 10.1038/386732a0. [DOI] [PubMed] [Google Scholar]
  21. Kharbanda S., Ren R., Pandey P., Shafman T. D., Feller S. M., Weichselbaum R. R., Kufe D. W. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature. 1995 Aug 31;376(6543):785–788. doi: 10.1038/376785a0. [DOI] [PubMed] [Google Scholar]
  22. Kim D. R., Dai Y., Mundy C. L., Yang W., Oettinger M. A. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 1999 Dec 1;13(23):3070–3080. doi: 10.1101/gad.13.23.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim S. T., Lim D. S., Canman C. E., Kastan M. B. Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem. 1999 Dec 31;274(53):37538–37543. doi: 10.1074/jbc.274.53.37538. [DOI] [PubMed] [Google Scholar]
  24. Ko L. J., Prives C. p53: puzzle and paradigm. Genes Dev. 1996 May 1;10(9):1054–1072. doi: 10.1101/gad.10.9.1054. [DOI] [PubMed] [Google Scholar]
  25. Kusano K., Johnson-Schlitz D. M., Engels W. R. Sterility of Drosophila with mutations in the Bloom syndrome gene--complementation by Ku70. Science. 2001 Mar 30;291(5513):2600–2602. doi: 10.1126/science.291.5513.2600. [DOI] [PubMed] [Google Scholar]
  26. Lampe D. J., Akerley B. J., Rubin E. J., Mekalanos J. J., Robertson H. M. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11428–11433. doi: 10.1073/pnas.96.20.11428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Landree M. A., Wibbenmeyer J. A., Roth D. B. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 1999 Dec 1;13(23):3059–3069. doi: 10.1101/gad.13.23.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee C. C., Mul Y. M., Rio D. C. The Drosophila P-element KP repressor protein dimerizes and interacts with multiple sites on P-element DNA. Mol Cell Biol. 1996 Oct;16(10):5616–5622. doi: 10.1128/mcb.16.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee J., Desiderio S. Cyclin A/CDK2 regulates V(D)J recombination by coordinating RAG-2 accumulation and DNA repair. Immunity. 1999 Dec;11(6):771–781. doi: 10.1016/s1074-7613(00)80151-x. [DOI] [PubMed] [Google Scholar]
  30. Lees-Miller S. P., Sakaguchi K., Ullrich S. J., Appella E., Anderson C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol. 1992 Nov;12(11):5041–5049. doi: 10.1128/mcb.12.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lieber M. R., Grawunder U., Wu X., Yaneva M. Tying loose ends: roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev. 1997 Feb;7(1):99–104. doi: 10.1016/s0959-437x(97)80116-5. [DOI] [PubMed] [Google Scholar]
  32. McClintock B. The significance of responses of the genome to challenge. Science. 1984 Nov 16;226(4676):792–801. doi: 10.1126/science.15739260. [DOI] [PubMed] [Google Scholar]
  33. Mizuuchi K. Polynucleotidyl transfer reactions in site-specific DNA recombination. Genes Cells. 1997 Jan;2(1):1–12. doi: 10.1046/j.1365-2443.1997.970297.x. [DOI] [PubMed] [Google Scholar]
  34. Mul Y. M., Rio D. C. Reprogramming the purine nucleotide cofactor requirement of Drosophila P element transposase in vivo. EMBO J. 1997 Jul 16;16(14):4441–4447. doi: 10.1093/emboj/16.14.4441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. O'brochta D. A., Handler A. M. Mobility of P elements in drosophilids and nondrosophilids. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6052–6056. doi: 10.1073/pnas.85.16.6052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pandita T. K., Lieberman H. B., Lim D. S., Dhar S., Zheng W., Taya Y., Kastan M. B. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene. 2000 Mar 9;19(11):1386–1391. doi: 10.1038/sj.onc.1203444. [DOI] [PubMed] [Google Scholar]
  37. Qiu J. X., Kale S. B., Yarnell Schultz H., Roth D. B. Separation-of-function mutants reveal critical roles for RAG2 in both the cleavage and joining steps of V(D)J recombination. Mol Cell. 2001 Jan;7(1):77–87. doi: 10.1016/s1097-2765(01)00156-3. [DOI] [PubMed] [Google Scholar]
  38. Reznikoff W. S., Bhasin A., Davies D. R., Goryshin I. Y., Mahnke L. A., Naumann T., Rayment I., Steiniger-White M., Twining S. S. Tn5: A molecular window on transposition. Biochem Biophys Res Commun. 1999 Dec 29;266(3):729–734. doi: 10.1006/bbrc.1999.1891. [DOI] [PubMed] [Google Scholar]
  39. Rio D. C., Laski F. A., Rubin G. M. Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell. 1986 Jan 17;44(1):21–32. doi: 10.1016/0092-8674(86)90481-2. [DOI] [PubMed] [Google Scholar]
  40. Sakai J., Kleckner N. Two classes of Tn10 transposase mutants that suppress mutations in the Tn10 terminal inverted repeat. Genetics. 1996 Nov;144(3):861–870. doi: 10.1093/genetics/144.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sekelsky J. J., Burtis K. C., Hawley R. S. Damage control: the pleiotropy of DNA repair genes in Drosophila melanogaster. Genetics. 1998 Apr;148(4):1587–1598. doi: 10.1093/genetics/148.4.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  43. Songyang Z., Gish G., Mbamalu G., Pawson T., Cantley L. C. A single point mutation switches the specificity of group III Src homology (SH) 2 domains to that of group I SH2 domains. J Biol Chem. 1995 Nov 3;270(44):26029–26032. doi: 10.1074/jbc.270.44.26029. [DOI] [PubMed] [Google Scholar]
  44. Staveley B. E., Heslip T. R., Hodgetts R. B., Bell J. B. Protected P-element termini suggest a role for inverted-repeat-binding protein in transposase-induced gap repair in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1321–1329. doi: 10.1093/genetics/139.3.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stellwagen A. E., Craig N. L. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics. 1997 Mar;145(3):573–585. doi: 10.1093/genetics/145.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Tibbetts R. S., Brumbaugh K. M., Williams J. M., Sarkaria J. N., Cliby W. A., Shieh S. Y., Taya Y., Prives C., Abraham R. T. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 1999 Jan 15;13(2):152–157. doi: 10.1101/gad.13.2.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Woodruff R. C., Blount J. L., Thompson J. N., Jr Hybrid dysgenesis in D. melanogaster is not a general release mechanism for DNA transpositions. Science. 1987 Sep 4;237(4819):1206–1218. doi: 10.1126/science.2820057. [DOI] [PubMed] [Google Scholar]
  48. Yarnell Schultz H., Landree M. A., Qiu J. X., Kale S. B., Roth D. B. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell. 2001 Jan;7(1):65–75. doi: 10.1016/s1097-2765(01)00155-1. [DOI] [PubMed] [Google Scholar]
  49. Yarnell Schultz H., Landree M. A., Qiu J. X., Kale S. B., Roth D. B. Joining-deficient RAG1 mutants block V(D)J recombination in vivo and hairpin opening in vitro. Mol Cell. 2001 Jan;7(1):65–75. doi: 10.1016/s1097-2765(01)00155-1. [DOI] [PubMed] [Google Scholar]
  50. Zakian V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell. 1995 Sep 8;82(5):685–687. doi: 10.1016/0092-8674(95)90463-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES