Abstract
The thermal stabilities of the duplexes formed between 4'-thio-modified oligodeoxynucleotides and their DNA and RNA complementary strands were determined and compared with those of the corresponding unmodified oligodeoxynucleotides. A 16mer oligodeoxynucleotide containing 10 contiguous 4'-thiothymidylate modifications formed a less stable duplex with the DNA target (deltaTm/modification -1.0 degrees C) than the corresponding unmodified oligodeoxynucleotide. However, when the same oligodeoxynucleotide was bound to the corresponding RNA target, a small increase in Tm was observed (deltaTm/modification +0.16 degrees C) when compared with the unmodified duplex. A study to identify the specificity of an oligodeoxynucleotide containing a 4'-thiothymidylate modification when forming a duplex with DNA or RNA containing a single mismatch opposite the modification found the resulting Tms to be almost identical to the wild-type duplexes, demonstrating that the 4'-thio-modification in oligodeoxynucleotides has no deleterious effect on specificity. The nuclease stability of 4'-thio-modified oligodeoxynucleotides was examined using snake venom phosphodiesterase (SVPD) and nuclease S1. No significant resistance to degradation by the exonuclease SVPD was observed when compared with the corresponding unmodified oligodeoxynucleotide. However, 4'-thio-modified oligodeoxynucleotides were found to be highly resistant to degradation by the endonuclease S1. It was also demonstrated that 4'-thio-modified oligodeoxynucleotides elicit Escherichia coli RNase H hydrolysis of the RNA target only at high enzyme concentration.
Full Text
The Full Text of this article is available as a PDF (105.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellon L., Barascut J. L., Maury G., Divita G., Goody R., Imbach J. L. 4'-Thio-oligo-beta-D-ribonucleotides: synthesis of beta-4'-thio-oligouridylates, nuclease resistance, base pairing properties, and interaction with HIV-1 reverse transcriptase. Nucleic Acids Res. 1993 Apr 11;21(7):1587–1593. doi: 10.1093/nar/21.7.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bellon L., Morvan F., Barascut J. L., Imbach J. L. Sugar modified oligonucleotides: synthesis, nuclease resistance and base pairing of oligodeoxynucleotides containing 1-(4'-thio-beta-D-ribofuranosyl)-thymine. Biochem Biophys Res Commun. 1992 Apr 30;184(2):797–803. doi: 10.1016/0006-291x(92)90660-d. [DOI] [PubMed] [Google Scholar]
- Boggon T. J., Hancox E. L., McAuley-Hecht K. E., Connolly B. A., Hunter W. N., Brown T., Walker R. T., Leonard G. A. The crystal structure analysis of d(CGCGAASSCGCG)2, a synthetic DNA dodecamer duplex containing four 4'-thio-2'-deoxythymidine nucleotides. Nucleic Acids Res. 1996 Mar 1;24(5):951–961. doi: 10.1093/nar/24.5.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen J. S. Oligonucleotides as therapeutic agents. Pharmacol Ther. 1991 Nov;52(2):211–225. doi: 10.1016/0163-7258(91)90009-b. [DOI] [PubMed] [Google Scholar]
- Crooke S. T. Progress toward oligonucleotide therapeutics: pharmacodynamic properties. FASEB J. 1993 Apr 1;7(6):533–539. doi: 10.1096/fasebj.7.6.7682523. [DOI] [PubMed] [Google Scholar]
- Crooke S. T. Therapeutic applications of oligonucleotides. Annu Rev Pharmacol Toxicol. 1992;32:329–376. doi: 10.1146/annurev.pa.32.040192.001553. [DOI] [PubMed] [Google Scholar]
- Cummins L. L., Owens S. R., Risen L. M., Lesnik E. A., Freier S. M., McGee D., Guinosso C. J., Cook P. D. Characterization of fully 2'-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 1995 Jun 11;23(11):2019–2024. doi: 10.1093/nar/23.11.2019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dyson M. R., Coe P. L., Walker R. T. The synthesis and antiviral activity of some 4'-thio-2'-deoxy nucleoside analogues. J Med Chem. 1991 Sep;34(9):2782–2786. doi: 10.1021/jm00113a016. [DOI] [PubMed] [Google Scholar]
- Freier S. M., Albergo D. D., Turner D. H. Solvent effects on the dynamics of (dG-dC)3. Biopolymers. 1983 Apr;22(4):1107–1131. doi: 10.1002/bip.360220408. [DOI] [PubMed] [Google Scholar]
- Hancox E. L., Connolly B. A., Walker R. T. Synthesis and properties of oligodeoxynucleotides containing the analogue 2'-deoxy-4'-thiothymidine. Nucleic Acids Res. 1993 Jul 25;21(15):3485–3491. doi: 10.1093/nar/21.15.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayakawa T., Ono A., Ueda T. Synthesis of decadeoxyribonucleotides containing 5-modified uracils and their interactions with restriction endonucleases Bgl II, Sau 3AI and Mbo I (nucleosides and nucleotides 82). Nucleic Acids Res. 1988 Jun 10;16(11):4761–4776. doi: 10.1093/nar/16.11.4761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawasaki A. M., Casper M. D., Freier S. M., Lesnik E. A., Zounes M. C., Cummins L. L., Gonzalez C., Cook P. D. Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem. 1993 Apr 2;36(7):831–841. doi: 10.1021/jm00059a007. [DOI] [PubMed] [Google Scholar]
- Krueger K. E., Papadopoulos V. Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis. Annu Rev Pharmacol Toxicol. 1992;32:211–237. doi: 10.1146/annurev.pa.32.040192.001235. [DOI] [PubMed] [Google Scholar]
- Lesnik E. A., Guinosso C. J., Kawasaki A. M., Sasmor H., Zounes M., Cummins L. L., Ecker D. J., Cook P. D., Freier S. M. Oligodeoxynucleotides containing 2'-O-modified adenosine: synthesis and effects on stability of DNA:RNA duplexes. Biochemistry. 1993 Aug 3;32(30):7832–7838. doi: 10.1021/bi00081a031. [DOI] [PubMed] [Google Scholar]
- Monia B. P., Johnston J. F., Ecker D. J., Zounes M. A., Lima W. F., Freier S. M. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem. 1992 Oct 5;267(28):19954–19962. [PubMed] [Google Scholar]
- Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
- Morvan F., Porumb H., Degols G., Lefebvre I., Pompon A., Sproat B. S., Rayner B., Malvy C., Lebleu B., Imbach J. L. Comparative evaluation of seven oligonucleotide analogues as potential antisense agents. J Med Chem. 1993 Jan 22;36(2):280–287. doi: 10.1021/jm00054a013. [DOI] [PubMed] [Google Scholar]
- Perbost M., Lucas M., Chavis C., Pompon A., Baumgartner H., Rayner B., Griengl H., Imbach J. L. Sugar modified oligonucleotides. I. Carbo-oligodeoxynucleotides as potential antisense agents. Biochem Biophys Res Commun. 1989 Dec 15;165(2):742–747. doi: 10.1016/s0006-291x(89)80029-4. [DOI] [PubMed] [Google Scholar]
- Rahim S. G., Trivedi N., Bogunovic-Batchelor M. V., Hardy G. W., Mills G., Selway J. W., Snowden W., Littler E., Coe P. L., Basnak I. Synthesis and anti-herpes virus activity of 2'-deoxy-4'-thiopyrimidine nucleosides. J Med Chem. 1996 Feb 2;39(3):789–795. doi: 10.1021/jm950029r. [DOI] [PubMed] [Google Scholar]
- Secrist J. A., 3rd, Tiwari K. N., Riordan J. M., Montgomery J. A. Synthesis and biological activity of 2'-deoxy-4'-thio pyrimidine nucleosides. J Med Chem. 1991 Aug;34(8):2361–2366. doi: 10.1021/jm00112a007. [DOI] [PubMed] [Google Scholar]
- Stein C. A., Subasinghe C., Shinozuka K., Cohen J. S. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 1988 Apr 25;16(8):3209–3221. doi: 10.1093/nar/16.8.3209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sági J., Szemzõ A., Szécsi J., Otvös L. Biochemical properties of oligo [(+)-carbocyclic-thymidylates] and their complexes. Nucleic Acids Res. 1990 Apr 25;18(8):2133–2140. doi: 10.1093/nar/18.8.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Draanen N. A., Freeman G. A., Short S. A., Harvey R., Jansen R., Szczech G., Koszalka G. W. Synthesis and antiviral activity of 2'-deoxy-4'-thio purine nucleosides. J Med Chem. 1996 Jan 19;39(2):538–542. doi: 10.1021/jm950701k. [DOI] [PubMed] [Google Scholar]