Skip to main content
Genetics logoLink to Genetics
. 2002 Sep;162(1):297–306. doi: 10.1093/genetics/162.1.297

Genetic control of mammalian meiotic recombination. I. Variation in exchange frequencies among males from inbred mouse strains.

Kara E Koehler 1, Jonathan P Cherry 1, Audrey Lynn 1, Patricia A Hunt 1, Terry J Hassold 1
PMCID: PMC1462263  PMID: 12242241

Abstract

Genetic background effects on the frequency of meiotic recombination have long been suspected in mice but never demonstrated in a systematic manner, especially in inbred strains. We used a recently described immunostaining technique to assess meiotic exchange patterns in male mice. We found that among four different inbred strains--CAST/Ei, A/J, C57BL/6, and SPRET/Ei--the mean number of meiotic exchanges per cell and, thus, the recombination rates in these genetic backgrounds were significantly different. These frequencies ranged from a low of 21.5 exchanges in CAST/Ei to a high of 24.9 in SPRET/Ei. We also found that, as expected, these crossover events were nonrandomly distributed and displayed positive interference. However, we found no evidence for significant differences in the patterns of crossover positioning between strains with different exchange frequencies. From our observations of >10,000 autosomal synaptonemal complexes, we conclude that achiasmate bivalents arise in the male mouse at a frequency of 0.1%. Thus, special mechanisms that segregate achiasmate chromosomes are unlikely to be an important component of mammalian male meiosis.

Full Text

The Full Text of this article is available as a PDF (317.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. K., Reeves A., Webb L. M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999 Apr;151(4):1569–1579. doi: 10.1093/genetics/151.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker S. M., Plug A. W., Prolla T. A., Bronner C. E., Harris A. C., Yao X., Christie D. M., Monell C., Arnheim N., Bradley A. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996 Jul;13(3):336–342. doi: 10.1038/ng0796-336. [DOI] [PubMed] [Google Scholar]
  3. Barlow A. L., Hultén M. A. Crossing over analysis at pachytene in man. Eur J Hum Genet. 1998 Jul-Aug;6(4):350–358. doi: 10.1038/sj.ejhg.5200200. [DOI] [PubMed] [Google Scholar]
  4. Bean C. J., Hunt P. A., Millie E. A., Hassold T. J. Analysis of a malsegregating mouse Y chromosome: evidence that the earliest cleavage divisions of the mammalian embryo are non-disjunction-prone. Hum Mol Genet. 2001 Apr 15;10(9):963–972. doi: 10.1093/hmg/10.9.963. [DOI] [PubMed] [Google Scholar]
  5. Broman K. W., Murray J. C., Sheffield V. C., White R. L., Weber J. L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998 Sep;63(3):861–869. doi: 10.1086/302011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broman Karl W., Rowe Lucy B., Churchill Gary A., Paigen Ken. Crossover interference in the mouse. Genetics. 2002 Mar;160(3):1123–1131. doi: 10.1093/genetics/160.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dausset J., Cann H., Cohen D., Lathrop M., Lalouel J. M., White R. Centre d'etude du polymorphisme humain (CEPH): collaborative genetic mapping of the human genome. Genomics. 1990 Mar;6(3):575–577. doi: 10.1016/0888-7543(90)90491-c. [DOI] [PubMed] [Google Scholar]
  8. Dietrich W. F., Miller J., Steen R., Merchant M. A., Damron-Boles D., Husain Z., Dredge R., Daly M. J., Ingalls K. A., O'Connor T. J. A comprehensive genetic map of the mouse genome. Nature. 1996 Mar 14;380(6570):149–152. doi: 10.1038/380149a0. [DOI] [PubMed] [Google Scholar]
  9. Eaker S., Pyle A., Cobb J., Handel M. A. Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci. 2001 Aug;114(Pt 16):2953–2965. doi: 10.1242/jcs.114.16.2953. [DOI] [PubMed] [Google Scholar]
  10. Gorlov I. P., Zhelezova A. I., Gorlova OYu Sex differences in chiasma distribution along two marked mouse chromosomes: differences in chiasma distribution as a reason for sex differences in recombination frequency. Genet Res. 1994 Dec;64(3):161–166. doi: 10.1017/s0016672300032821. [DOI] [PubMed] [Google Scholar]
  11. Hawley R. S., McKim K. S., Arbel T. Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev Genet. 1993;27:281–317. doi: 10.1146/annurev.ge.27.120193.001433. [DOI] [PubMed] [Google Scholar]
  12. Henderson S. A., Edwards R. G. Chiasma frequency and maternal age in mammals. Nature. 1968 Apr 6;218(5136):22–28. doi: 10.1038/218022a0. [DOI] [PubMed] [Google Scholar]
  13. Hultén M. Chiasma distribution at diakinesis in the normal human male. Hereditas. 1974;76(1):55–78. doi: 10.1111/j.1601-5223.1974.tb01177.x. [DOI] [PubMed] [Google Scholar]
  14. Hunter N., Borts R. H. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 1997 Jun 15;11(12):1573–1582. doi: 10.1101/gad.11.12.1573. [DOI] [PubMed] [Google Scholar]
  15. Jagiello G., Fang J. S. Analyses of diplotene chiasma frequencies in mouse oocytes and spermatocytes in relation to ageing and sexual dimorphism. Cytogenet Cell Genet. 1979;23(1-2):53–60. doi: 10.1159/000131302. [DOI] [PubMed] [Google Scholar]
  16. LeMaire-Adkins R., Radke K., Hunt P. A. Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J Cell Biol. 1997 Dec 29;139(7):1611–1619. doi: 10.1083/jcb.139.7.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marchetti F., Bishop J. B., Lowe X., Generoso W. M., Hozier J., Wyrobek A. J. Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3952–3957. doi: 10.1073/pnas.061404598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mather K. Crossing over and Heterochromatin in the X Chromosome of Drosophila Melanogaster. Genetics. 1939 Apr;24(3):413–435. doi: 10.1093/genetics/24.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peters A. H., Plug A. W., van Vugt M. J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997 Feb;5(1):66–68. doi: 10.1023/a:1018445520117. [DOI] [PubMed] [Google Scholar]
  20. Plug A. W., Peters A. H., Keegan K. S., Hoekstra M. F., de Boer P., Ashley T. Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci. 1998 Feb;111(Pt 4):413–423. doi: 10.1242/jcs.111.4.413. [DOI] [PubMed] [Google Scholar]
  21. Polani P. E., Jagiello G. M. Chiasmata, meiotic univalents, and age in relation to aneuploid imbalance in mice. Cytogenet Cell Genet. 1976;16(6):505–529. doi: 10.1159/000130668. [DOI] [PubMed] [Google Scholar]
  22. Reeves R. H., Crowley M. R., O'Hara B. F., Gearhart J. D. Sex, strain, and species differences affect recombination across an evolutionarily conserved segment of mouse chromosome 16. Genomics. 1990 Sep;8(1):141–148. doi: 10.1016/0888-7543(90)90236-n. [DOI] [PubMed] [Google Scholar]
  23. Speed R. M., Chandley A. C. Meiosis in the foetal mouse ovary. II. Oocyte development and age-related aneuploidy. Does a production line exist? Chromosoma. 1983;88(3):184–189. doi: 10.1007/BF00285618. [DOI] [PubMed] [Google Scholar]
  24. Speed R. M. Meiosis in the foetal mouse ovary. I. An analysis at the light microscope level using surface-spreading. Chromosoma. 1982;85(3):427–437. doi: 10.1007/BF00330366. [DOI] [PubMed] [Google Scholar]
  25. Sugawara S., Mikamo K. Absence of correlation between univalent formation and meiotic nondisjunction in aged female Chinese hamsters. Cytogenet Cell Genet. 1983;35(1):34–40. doi: 10.1159/000131833. [DOI] [PubMed] [Google Scholar]
  26. Tanzi R. E., Watkins P. C., Stewart G. D., Wexler N. S., Gusella J. F., Haines J. L. A genetic linkage map of human chromosome 21: analysis of recombination as a function of sex and age. Am J Hum Genet. 1992 Mar;50(3):551–558. [PMC free article] [PubMed] [Google Scholar]
  27. True J. R., Mercer J. M., Laurie C. C. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. doi: 10.1093/genetics/142.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Williams C. G., Goodman M. M., Stuber C. W. Comparative recombination distances among Zea mays L. inbreds, wide crosses and interspecific hybrids. Genetics. 1995 Dec;141(4):1573–1581. doi: 10.1093/genetics/141.4.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Woods L. M., Hodges C. A., Baart E., Baker S. M., Liskay M., Hunt P. A. Chromosomal influence on meiotic spindle assembly: abnormal meiosis I in female Mlh1 mutant mice. J Cell Biol. 1999 Jun 28;145(7):1395–1406. doi: 10.1083/jcb.145.7.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  31. Zwick M. E., Cutler D. J., Langley C. H. Classic Weinstein: tetrad analysis, genetic variation and achiasmate segregation in Drosophila and humans. Genetics. 1999 Aug;152(4):1615–1629. doi: 10.1093/genetics/152.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES