Abstract
Drosophila germ cells form at the posterior pole of the embryo and migrate to the somatic gonad. Approximately 50% of the germ cells that form reach their target. The errant cells within the embryo undergo developmentally regulated cell death. Prior studies have identified some autosomal genes that regulate germ cell migration, but the genes that control germ cell death are not known. To identify X-linked genes required for germ cell migration and/or death, we performed a screen for mutations that disrupt these processes. Here we report the identification of scattershot and outsiders, two genes that regulate the programmed death of germ cells. The scattershot gene is defined by a mutation that disrupts both germ cell migration and the death of germ cells ectopic to the gonad. Maternal and zygotic expression of scattershot is required, but the migration and cell death functions can be genetically uncoupled. Zygotic expression of wild-type scattershot rescues germ cell pathfinding, but does not restore the programmed death of errant cells. The outsiders gene is required zygotically. In outsiders mutant embryos, the appropriate number of germ cells is incorporated into the gonad, but germ cells ectopic to the gonad persist.
Full Text
The Full Text of this article is available as a PDF (191.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams J. M. An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol. 1999 Nov;9(11):435–440. doi: 10.1016/s0962-8924(99)01646-3. [DOI] [PubMed] [Google Scholar]
- Abrams J. M., White K., Fessler L. I., Steller H. Programmed cell death during Drosophila embryogenesis. Development. 1993 Jan;117(1):29–43. doi: 10.1242/dev.117.1.29. [DOI] [PubMed] [Google Scholar]
- Asaoka M., Sano H., Obara Y., Kobayashi S. Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster. Mech Dev. 1998 Nov;78(1-2):153–158. doi: 10.1016/s0925-4773(98)00164-6. [DOI] [PubMed] [Google Scholar]
- Ashman L. K. The biology of stem cell factor and its receptor C-kit. Int J Biochem Cell Biol. 1999 Oct;31(10):1037–1051. doi: 10.1016/s1357-2725(99)00076-x. [DOI] [PubMed] [Google Scholar]
- Bangs P., White K. Regulation and execution of apoptosis during Drosophila development. Dev Dyn. 2000 May;218(1):68–79. doi: 10.1002/(SICI)1097-0177(200005)218:1<68::AID-DVDY6>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
- Boyle M., Bonini N., DiNardo S. Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development. 1997 Mar;124(5):971–982. doi: 10.1242/dev.124.5.971. [DOI] [PubMed] [Google Scholar]
- Breitwieser W., Markussen F. H., Horstmann H., Ephrussi A. Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev. 1996 Sep 1;10(17):2179–2188. doi: 10.1101/gad.10.17.2179. [DOI] [PubMed] [Google Scholar]
- Brodsky M. H., Nordstrom W., Tsang G., Kwan E., Rubin G. M., Abrams J. M. Drosophila p53 binds a damage response element at the reaper locus. Cell. 2000 Mar 31;101(1):103–113. doi: 10.1016/S0092-8674(00)80627-3. [DOI] [PubMed] [Google Scholar]
- Broihier H. T., Moore L. A., Van Doren M., Newman S., Lehmann R. zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development. 1998 Feb;125(4):655–666. doi: 10.1242/dev.125.4.655. [DOI] [PubMed] [Google Scholar]
- Brookman J. J., Toosy A. T., Shashidhara L. S., White R. A. The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development. 1992 Dec;116(4):1185–1192. doi: 10.1242/dev.116.4.1185. [DOI] [PubMed] [Google Scholar]
- Callaini G., Riparbelli M. G., Dallai R. Pole cell migration through the gut wall of the Drosophila embryo: analysis of cell interactions. Dev Biol. 1995 Aug;170(2):365–375. doi: 10.1006/dbio.1995.1222. [DOI] [PubMed] [Google Scholar]
- Charrier J. B., Lapointe F., Le Douarin N. M., Teillet M. A. Anti-apoptotic role of Sonic hedgehog protein at the early stages of nervous system organogenesis. Development. 2001 Oct;128(20):4011–4020. doi: 10.1242/dev.128.20.4011. [DOI] [PubMed] [Google Scholar]
- Christich Anna, Kauppila Saila, Chen Po, Sogame Naoko, Ho Su Inn, Abrams John M. The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr Biol. 2002 Jan 22;12(2):137–140. doi: 10.1016/s0960-9822(01)00658-3. [DOI] [PubMed] [Google Scholar]
- Deshpande G., Calhoun G., Yanowitz J. L., Schedl P. D. Novel functions of nanos in downregulating mitosis and transcription during the development of the Drosophila germline. Cell. 1999 Oct 29;99(3):271–281. doi: 10.1016/s0092-8674(00)81658-x. [DOI] [PubMed] [Google Scholar]
- Deshpande G., Swanhart L., Chiang P., Schedl P. Hedgehog signaling in germ cell migration. Cell. 2001 Sep 21;106(6):759–769. doi: 10.1016/s0092-8674(01)00488-3. [DOI] [PubMed] [Google Scholar]
- Fischer-Vize J. A., Rubin G. M., Lehmann R. The fat facets gene is required for Drosophila eye and embryo development. Development. 1992 Dec;116(4):985–1000. doi: 10.1242/dev.116.4.985. [DOI] [PubMed] [Google Scholar]
- Fleischman R. A. From white spots to stem cells: the role of the Kit receptor in mammalian development. Trends Genet. 1993 Aug;9(8):285–290. doi: 10.1016/0168-9525(93)90015-a. [DOI] [PubMed] [Google Scholar]
- Foley K., Cooley L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development. 1998 Mar;125(6):1075–1082. doi: 10.1242/dev.125.6.1075. [DOI] [PubMed] [Google Scholar]
- Forbes A., Lehmann R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development. 1998 Feb;125(4):679–690. doi: 10.1242/dev.125.4.679. [DOI] [PubMed] [Google Scholar]
- Fukushima N., Ishii I., Contos J. J., Weiner J. A., Chun J. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol. 2001;41:507–534. doi: 10.1146/annurev.pharmtox.41.1.507. [DOI] [PubMed] [Google Scholar]
- Goetzl E. J., An S. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 1998 Dec;12(15):1589–1598. [PubMed] [Google Scholar]
- Goetzl E. J., Lee H., Dolezalova H., Kalli K. R., Conover C. A., Hu Y. L., Azuma T., Stossel T. P., Karliner J. S., Jaffe R. B. Mechanisms of lysolipid phosphate effects on cellular survival and proliferation. Ann N Y Acad Sci. 2000 Apr;905:177–187. doi: 10.1111/j.1749-6632.2000.tb06549.x. [DOI] [PubMed] [Google Scholar]
- Hay B., Ackerman L., Barbel S., Jan L. Y., Jan Y. N. Identification of a component of Drosophila polar granules. Development. 1988 Aug;103(4):625–640. doi: 10.1242/dev.103.4.625. [DOI] [PubMed] [Google Scholar]
- Holder N., Klein R. Eph receptors and ephrins: effectors of morphogenesis. Development. 1999 May;126(10):2033–2044. doi: 10.1242/dev.126.10.2033. [DOI] [PubMed] [Google Scholar]
- Holmes A. L., Raper R. N., Heilig J. S. Genetic analysis of Drosophila larval optic nerve development. Genetics. 1998 Mar;148(3):1189–1201. doi: 10.1093/genetics/148.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaglarz M. K., Howard K. R. Primordial germ cell migration in Drosophila melanogaster is controlled by somatic tissue. Development. 1994 Jan;120(1):83–89. doi: 10.1242/dev.120.1.83. [DOI] [PubMed] [Google Scholar]
- Jaglarz M. K., Howard K. R. The active migration of Drosophila primordial germ cells. Development. 1995 Nov;121(11):3495–3503. doi: 10.1242/dev.121.11.3495. [DOI] [PubMed] [Google Scholar]
- Johnson-Schlitz D., Lim J. K. Cytogenetics of Notch mutations arising in the unstable X chromosome Uc of Drosophila melanogaster. Genetics. 1987 Apr;115(4):701–709. doi: 10.1093/genetics/115.4.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingler M., Gergen J. P. Regulation of runt transcription by Drosophila segmentation genes. Mech Dev. 1993 Sep;43(1):3–19. doi: 10.1016/0925-4773(93)90019-t. [DOI] [PubMed] [Google Scholar]
- Kobayashi S., Yamada M., Asaoka M., Kitamura T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature. 1996 Apr 25;380(6576):708–711. doi: 10.1038/380708a0. [DOI] [PubMed] [Google Scholar]
- Kupperman E., An S., Osborne N., Waldron S., Stainier D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000 Jul 13;406(6792):192–195. doi: 10.1038/35018092. [DOI] [PubMed] [Google Scholar]
- Lasko P. F., Ashburner M. Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 1990 Jun;4(6):905–921. doi: 10.1101/gad.4.6.905. [DOI] [PubMed] [Google Scholar]
- Lauffenburger D. A., Horwitz A. F. Cell migration: a physically integrated molecular process. Cell. 1996 Feb 9;84(3):359–369. doi: 10.1016/s0092-8674(00)81280-5. [DOI] [PubMed] [Google Scholar]
- Lee C. Y., Baehrecke E. H. Steroid regulation of autophagic programmed cell death during development. Development. 2001 Apr;128(8):1443–1455. doi: 10.1242/dev.128.8.1443. [DOI] [PubMed] [Google Scholar]
- Meier P., Finch A., Evan G. Apoptosis in development. Nature. 2000 Oct 12;407(6805):796–801. doi: 10.1038/35037734. [DOI] [PubMed] [Google Scholar]
- Moore L. A., Broihier H. T., Van Doren M., Lunsford L. B., Lehmann R. Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development. 1998 Feb;125(4):667–678. doi: 10.1242/dev.125.4.667. [DOI] [PubMed] [Google Scholar]
- Nakamura A., Amikura R., Mukai M., Kobayashi S., Lasko P. F. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science. 1996 Dec 20;274(5295):2075–2079. doi: 10.1126/science.274.5295.2075. [DOI] [PubMed] [Google Scholar]
- O'Hare K., Murphy C., Levis R., Rubin G. M. DNA sequence of the white locus of Drosophila melanogaster. J Mol Biol. 1984 Dec 15;180(3):437–455. doi: 10.1016/0022-2836(84)90021-4. [DOI] [PubMed] [Google Scholar]
- Ollmann M., Young L. M., Di Como C. J., Karim F., Belvin M., Robertson S., Whittaker K., Demsky M., Fisher W. W., Buchman A. Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell. 2000 Mar 31;101(1):91–101. doi: 10.1016/S0092-8674(00)80626-1. [DOI] [PubMed] [Google Scholar]
- Simon J. A., Sutton C. A., Lobell R. B., Glaser R. L., Lis J. T. Determinants of heat shock-induced chromosome puffing. Cell. 1985 Apr;40(4):805–817. doi: 10.1016/0092-8674(85)90340-x. [DOI] [PubMed] [Google Scholar]
- Smith J. L., Wilson J. E., Macdonald P. M. Overexpression of oskar directs ectopic activation of nanos and presumptive pole cell formation in Drosophila embryos. Cell. 1992 Sep 4;70(5):849–859. doi: 10.1016/0092-8674(92)90318-7. [DOI] [PubMed] [Google Scholar]
- Sonnenblick B. P. Germ Cell Movements and Sex Differentiation of the Gonads in the Drosophila Embryo. Proc Natl Acad Sci U S A. 1941 Oct 15;27(10):484–489. doi: 10.1073/pnas.27.10.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Starz-Gaiano M., Cho N. K., Forbes A., Lehmann R. Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development. 2001 Mar;128(6):983–991. doi: 10.1242/dev.128.6.983. [DOI] [PubMed] [Google Scholar]
- Starz-Gaiano M., Lehmann R. Moving towards the next generation. Mech Dev. 2001 Jul;105(1-2):5–18. doi: 10.1016/s0925-4773(01)00392-6. [DOI] [PubMed] [Google Scholar]
- Swarthout J. T., Walling H. W. Lysophosphatidic acid: receptors, signaling and survival. Cell Mol Life Sci. 2000 Dec;57(13-14):1978–1985. doi: 10.1007/PL00000678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 1989 Aug;98(2):81–85. doi: 10.1007/BF00291041. [DOI] [PubMed] [Google Scholar]
- Thummel C. S. Steroid-triggered death by autophagy. Bioessays. 2001 Aug;23(8):677–682. doi: 10.1002/bies.1096. [DOI] [PubMed] [Google Scholar]
- Underwood E. M., Caulton J. H., Allis C. D., Mahowald A. P. Developmental fate of pole cells in Drosophila melanogaster. Dev Biol. 1980 Jun 15;77(2):303–314. doi: 10.1016/0012-1606(80)90476-5. [DOI] [PubMed] [Google Scholar]
- Van Doren M., Broihier H. T., Moore L. A., Lehmann R. HMG-CoA reductase guides migrating primordial germ cells. Nature. 1998 Dec 3;396(6710):466–469. doi: 10.1038/24871. [DOI] [PubMed] [Google Scholar]
- Vernooy S. Y., Copeland J., Ghaboosi N., Griffin E. E., Yoo S. J., Hay B. A. Cell death regulation in Drosophila: conservation of mechanism and unique insights. J Cell Biol. 2000 Jul 24;150(2):F69–F76. doi: 10.1083/jcb.150.2.f69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakamatsu Y., Mochii M., Vogel K. S., Weston J. A. Avian neural crest-derived neurogenic precursors undergo apoptosis on the lateral migration pathway. Development. 1998 Nov;125(21):4205–4213. doi: 10.1242/dev.125.21.4205. [DOI] [PubMed] [Google Scholar]
- Warrior R. Primordial germ cell migration and the assembly of the Drosophila embryonic gonad. Dev Biol. 1994 Nov;166(1):180–194. doi: 10.1006/dbio.1994.1306. [DOI] [PubMed] [Google Scholar]
- Williamson A., Lehmann R. Germ cell development in Drosophila. Annu Rev Cell Dev Biol. 1996;12:365–391. doi: 10.1146/annurev.cellbio.12.1.365. [DOI] [PubMed] [Google Scholar]
- Wylie C. Germ cells. Curr Opin Genet Dev. 2000 Aug;10(4):410–413. doi: 10.1016/s0959-437x(00)00105-2. [DOI] [PubMed] [Google Scholar]
- Zhang N., Zhang J., Cheng Y., Howard K. Identification and genetic analysis of wunen, a gene guiding Drosophila melanogaster germ cell migration. Genetics. 1996 Jul;143(3):1231–1241. doi: 10.1093/genetics/143.3.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang N., Zhang J., Purcell K. J., Cheng Y., Howard K. The Drosophila protein Wunen repels migrating germ cells. Nature. 1997 Jan 2;385(6611):64–67. doi: 10.1038/385064a0. [DOI] [PubMed] [Google Scholar]