Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):977–985. doi: 10.1093/genetics/162.2.977

Incorporation of large heterologies into heteroduplex DNA during double-strand-break repair in mouse cells.

Steven J Raynard 1, Mark D Baker 1
PMCID: PMC1462280  PMID: 12399405

Abstract

In this study, the formation and repair of large (>1 kb) insertion/deletion (I/D) heterologies during double-strand-break repair (DSBR) was investigated using a gene-targeting assay that permits efficient recovery of sequence insertion events at the haploid chromosomal immunoglobulin (Ig) mu-locus in mouse hybridoma cells. The results revealed that (i) large I/D heterologies were generated on one or both sides of the DSB and, in some cases, formed symmetrically in both homology regions; (ii) large I/D heterologies did not negatively affect the gene targeting frequency; and (iii) prior to DNA replication, the large I/D heterologies were rectified.

Full Text

The Full Text of this article is available as a PDF (268.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. E., West S. C. Bypass of DNA heterologies during RuvAB-mediated three- and four-strand branch migration. J Mol Biol. 1996 Nov 8;263(4):582–596. doi: 10.1006/jmbi.1996.0600. [DOI] [PubMed] [Google Scholar]
  2. Allers T., Lichten M. Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell. 2001 Jul;8(1):225–231. doi: 10.1016/s1097-2765(01)00280-5. [DOI] [PubMed] [Google Scholar]
  3. Ayares D., Ganea D., Chekuri L., Campbell C. R., Kucherlapati R. Repair of single-stranded DNA nicks, gaps, and loops in mammalian cells. Mol Cell Biol. 1987 May;7(5):1656–1662. doi: 10.1128/mcb.7.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker M. D., Birmingham E. C. Evidence for biased holliday junction cleavage and mismatch repair directed by junction cuts during double-strand-break repair in mammalian cells. Mol Cell Biol. 2001 May;21(10):3425–3435. doi: 10.1128/MCB.21.10.3425-3435.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker M. D., Pennell N., Bosnoyan L., Shulman M. J. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6432–6436. doi: 10.1073/pnas.85.17.6432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bautista D., Shulman M. J. A hit-and-run system for introducing mutations into the Ig H chain locus of hybridoma cells by homologous recombination. J Immunol. 1993 Aug 15;151(4):1950–1958. [PubMed] [Google Scholar]
  7. Bill C. A., Taghian D. G., Duran W. A., Nickoloff J. A. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure. Mutat Res. 2001 Apr 4;485(3):255–265. doi: 10.1016/s0921-8777(01)00065-9. [DOI] [PubMed] [Google Scholar]
  8. Bollag R. J., Elwood D. R., Tobin E. D., Godwin A. R., Liskay R. M. Formation of heteroduplex DNA during mammalian intrachromosomal gene conversion. Mol Cell Biol. 1992 Apr;12(4):1546–1552. doi: 10.1128/mcb.12.4.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cao L., Alani E., Kleckner N. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell. 1990 Jun 15;61(6):1089–1101. doi: 10.1016/0092-8674(90)90072-m. [DOI] [PubMed] [Google Scholar]
  10. Chen W., Jinks-Robertson S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics. 1999 Apr;151(4):1299–1313. doi: 10.1093/genetics/151.4.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chen X. B., Melchionna R., Denis C. M., Gaillard P. H., Blasina A., Van de Weyer I., Boddy M. N., Russell P., Vialard J., McGowan C. H. Human Mus81-associated endonuclease cleaves Holliday junctions in vitro. Mol Cell. 2001 Nov;8(5):1117–1127. doi: 10.1016/s1097-2765(01)00375-6. [DOI] [PubMed] [Google Scholar]
  12. Clikeman J. A., Wheeler S. L., Nickoloff J. A. Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae. Genetics. 2001 Apr;157(4):1481–1491. doi: 10.1093/genetics/157.4.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Constantinou A., Davies A. A., West S. C. Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell. 2001 Jan 26;104(2):259–268. doi: 10.1016/s0092-8674(01)00210-0. [DOI] [PubMed] [Google Scholar]
  14. Corrette-Bennett S. E., Mohlman N. L., Rosado Z., Miret J. J., Hess P. M., Parker B. O., Lahue R. S. Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucleic Acids Res. 2001 Oct 15;29(20):4134–4143. doi: 10.1093/nar/29.20.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Corrette-Bennett S. E., Parker B. O., Mohlman N. L., Lahue R. S. Correction of large mispaired DNA loops by extracts of Saccharomyces cerevisiae. J Biol Chem. 1999 Jun 18;274(25):17605–17611. doi: 10.1074/jbc.274.25.17605. [DOI] [PubMed] [Google Scholar]
  16. Datta A., Hendrix M., Lipsitch M., Jinks-Robertson S. Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9757–9762. doi: 10.1073/pnas.94.18.9757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deng C., Thomas K. R., Capecchi M. R. Location of crossovers during gene targeting with insertion and replacement vectors. Mol Cell Biol. 1993 Apr;13(4):2134–2140. doi: 10.1128/mcb.13.4.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Elliott B., Jasin M. Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol. 2001 Apr;21(8):2671–2682. doi: 10.1128/MCB.21.8.2671-2682.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Elliott B., Richardson C., Winderbaum J., Nickoloff J. A., Jasin M. Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol. 1998 Jan;18(1):93–101. doi: 10.1128/mcb.18.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Evans E., Alani E. Roles for mismatch repair factors in regulating genetic recombination. Mol Cell Biol. 2000 Nov;20(21):7839–7844. doi: 10.1128/mcb.20.21.7839-7844.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Godwin A. R., Liskay R. M. The effects of insertions on mammalian intrachromosomal recombination. Genetics. 1994 Feb;136(2):607–617. doi: 10.1093/genetics/136.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gross-Bellard M., Oudet P., Chambon P. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem. 1973 Jul 2;36(1):32–38. doi: 10.1111/j.1432-1033.1973.tb02881.x. [DOI] [PubMed] [Google Scholar]
  23. Harfe B. D., Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–399. doi: 10.1146/annurev.genet.34.1.359. [DOI] [PubMed] [Google Scholar]
  24. Harfe B. D., Jinks-Robertson S. Removal of frameshift intermediates by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4766–4773. doi: 10.1128/mcb.19.7.4766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hasty P., Rivera-Pérez J., Bradley A. The role and fate of DNA ends for homologous recombination in embryonic stem cells. Mol Cell Biol. 1992 Jun;12(6):2464–2474. doi: 10.1128/mcb.12.6.2464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Holmes V. F., Benjamin K. R., Crisona N. J., Cozzarelli N. R. Bypass of heterology during strand transfer by Saccharomyces cerevisiae Rad51 protein. Nucleic Acids Res. 2001 Dec 15;29(24):5052–5057. doi: 10.1093/nar/29.24.5052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Iype L. E., Wood E. A., Inman R. B., Cox M. M. RuvA and RuvB proteins facilitate the bypass of heterologous DNA insertions during RecA protein-mediated DNA strand exchange. J Biol Chem. 1994 Oct 7;269(40):24967–24978. [PubMed] [Google Scholar]
  28. Johnson R. D., Jasin M. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 2000 Jul 3;19(13):3398–3407. doi: 10.1093/emboj/19.13.3398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kearney H. M., Kirkpatrick D. T., Gerton J. L., Petes T. D. Meiotic recombination involving heterozygous large insertions in Saccharomyces cerevisiae: formation and repair of large, unpaired DNA loops. Genetics. 2001 Aug;158(4):1457–1476. doi: 10.1093/genetics/158.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kirkpatrick D. T. Roles of the DNA mismatch repair and nucleotide excision repair proteins during meiosis. Cell Mol Life Sci. 1999 Mar;55(3):437–449. doi: 10.1007/s000180050300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Köhler G., Potash M. J., Lehrach H., Shulman M. J. Deletions in immunoglobulin mu chains. EMBO J. 1982;1(5):555–563. doi: 10.1002/j.1460-2075.1982.tb01208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li J., Baker M. D. Formation and repair of heteroduplex DNA on both sides of the double-strand break during mammalian gene targeting. J Mol Biol. 2000 Jan 21;295(3):505–516. doi: 10.1006/jmbi.1999.3400. [DOI] [PubMed] [Google Scholar]
  33. Li J., Baker M. D. Use of a small palindrome genetic marker to investigate mechanisms of double-strand-break repair in mammalian cells. Genetics. 2000 Mar;154(3):1281–1289. doi: 10.1093/genetics/154.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liang F., Han M., Romanienko P. J., Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5172–5177. doi: 10.1073/pnas.95.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Littman S. J., Fang W. H., Modrich P. Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5' single-strand break and is independent of the mismatch repair system. J Biol Chem. 1999 Mar 12;274(11):7474–7481. doi: 10.1074/jbc.274.11.7474. [DOI] [PubMed] [Google Scholar]
  36. Lühr B., Scheller J., Meyer P., Kramer W. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae. Mol Gen Genet. 1998 Feb;257(3):362–367. doi: 10.1007/s004380050658. [DOI] [PubMed] [Google Scholar]
  37. Morel P., Stasiak A., Ehrlich S. D., Cassuto E. Effect of length and location of heterologous sequences on RecA-mediated strand exchange. J Biol Chem. 1994 Aug 5;269(31):19830–19835. [PubMed] [Google Scholar]
  38. Ng P., Baker M. D. Mechanisms of double-strand-break repair during gene targeting in mammalian cells. Genetics. 1999 Mar;151(3):1127–1141. doi: 10.1093/genetics/151.3.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nicholson A., Hendrix M., Jinks-Robertson S., Crouse G. F. Regulation of mitotic homeologous recombination in yeast. Functions of mismatch repair and nucleotide excision repair genes. Genetics. 2000 Jan;154(1):133–146. doi: 10.1093/genetics/154.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nickoloff J. A., Singer J. D., Hoekstra M. F., Heffron F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J Mol Biol. 1989 Jun 5;207(3):527–541. doi: 10.1016/0022-2836(89)90462-2. [DOI] [PubMed] [Google Scholar]
  41. Nickoloff J. A., Sweetser D. B., Clikeman J. A., Khalsa G. J., Wheeler S. L. Multiple heterologies increase mitotic double-strand break-induced allelic gene conversion tract lengths in yeast. Genetics. 1999 Oct;153(2):665–679. doi: 10.1093/genetics/153.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ochi A., Hawley R. G., Hawley T., Shulman M. J., Traunecker A., Köhler G., Hozumi N. Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6351–6355. doi: 10.1073/pnas.80.20.6351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Parsons C. A., Stasiak A., West S. C. The E.coli RuvAB proteins branch migrate Holliday junctions through heterologous DNA sequences in a reaction facilitated by SSB. EMBO J. 1995 Nov 15;14(22):5736–5744. doi: 10.1002/j.1460-2075.1995.tb00260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Priebe S. D., Westmoreland J., Nilsson-Tillgren T., Resnick M. A. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Mol Cell Biol. 1994 Jul;14(7):4802–4814. doi: 10.1128/mcb.14.7.4802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  47. Rudin N., Haber J. E. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol. 1988 Sep;8(9):3918–3928. doi: 10.1128/mcb.8.9.3918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sargent R. G., Brenneman M. A., Wilson J. H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol Cell Biol. 1997 Jan;17(1):267–277. doi: 10.1128/mcb.17.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sargent R. G., Merrihew R. V., Nairn R., Adair G., Meuth M., Wilson J. H. The influence of a (GT)29 microsatellite sequence on homologous recombination in the hamster adenine phosphoribosyltransferase gene. Nucleic Acids Res. 1996 Feb 15;24(4):746–753. doi: 10.1093/nar/24.4.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sia E. A., Kokoska R. J., Dominska M., Greenwell P., Petes T. D. Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol. 1997 May;17(5):2851–2858. doi: 10.1128/mcb.17.5.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sijbers A. M., de Laat W. L., Ariza R. R., Biggerstaff M., Wei Y. F., Moggs J. G., Carter K. C., Shell B. K., Evans E., de Jong M. C. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell. 1996 Sep 6;86(5):811–822. doi: 10.1016/s0092-8674(00)80155-5. [DOI] [PubMed] [Google Scholar]
  52. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  53. Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
  54. Takata M., Sasaki M. S., Sonoda E., Morrison C., Hashimoto M., Utsumi H., Yamaguchi-Iwai Y., Shinohara A., Takeda S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 1998 Sep 15;17(18):5497–5508. doi: 10.1093/emboj/17.18.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Thaler D. S., Stahl F. W. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu Rev Genet. 1988;22:169–197. doi: 10.1146/annurev.ge.22.120188.001125. [DOI] [PubMed] [Google Scholar]
  56. Tran H. T., Gordenin D. A., Resnick M. A. The prevention of repeat-associated deletions in Saccharomyces cerevisiae by mismatch repair depends on size and origin of deletions. Genetics. 1996 Aug;143(4):1579–1587. doi: 10.1093/genetics/143.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Umar A., Boyer J. C., Kunkel T. A. DNA loop repair by human cell extracts. Science. 1994 Nov 4;266(5186):814–816. doi: 10.1126/science.7973637. [DOI] [PubMed] [Google Scholar]
  58. Waldman A. S., Tran H., Goldsmith E. C., Resnick M. A. Long inverted repeats are an at-risk motif for recombination in mammalian cells. Genetics. 1999 Dec;153(4):1873–1883. doi: 10.1093/genetics/153.4.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Weiss U., Wilson J. H. Effects of nicks on repair of single-stranded loops in heteroduplex DNA in mammalian cells. Somat Cell Mol Genet. 1989 Jan;15(1):13–18. doi: 10.1007/BF01534665. [DOI] [PubMed] [Google Scholar]
  60. Weiss U., Wilson J. H. Repair of single-stranded loops in heteroduplex DNA transfected into mammalian cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1619–1623. doi: 10.1073/pnas.84.6.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. White C. I., Haber J. E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 1990 Mar;9(3):663–673. doi: 10.1002/j.1460-2075.1990.tb08158.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES