Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):737–745. doi: 10.1093/genetics/162.2.737

In Candida albicans, white-opaque switchers are homozygous for mating type.

Shawn R Lockhart 1, Claude Pujol 1, Karla J Daniels 1, Matthew G Miller 1, Alexander D Johnson 1, Michael A Pfaller 1, David R Soll 1
PMCID: PMC1462282  PMID: 12399384

Abstract

The relationship between the configuration of the mating type locus (MTL) and white-opaque switching in Candida albicans has been examined. Seven genetically unrelated clinical isolates selected for their capacity to undergo the white-opaque transition all proved to be homozygous at the MTL locus, either MTLa or MTLalpha. In an analysis of the allelism of 220 clinical isolates representing the five major clades of C. albicans, 3.2% were homozygous and 96.8% were heterozygous at the MTL locus. Of the seven identified MTL homozygotes, five underwent the white-opaque transition. Of 20 randomly selected MTL heterozygotes, 18 did not undergo the white-opaque transition. The two that did were found to become MTL homozygous at very high frequency before undergoing white-opaque switching. Our results demonstrate that only MTL homozygotes undergo the white-opaque transition, that MTL heterozygotes that become homozygous at high frequency exist, and that the generation of MTL homozygotes and the white-opaque transition occur in isolates in different genetic clades of C. albicans. Our results demonstrate that mating-competent strains of C. albicans exist naturally in patient populations and suggest that mating may play a role in the genesis of diversity in this pernicious fungal pathogen.

Full Text

The Full Text of this article is available as a PDF (286.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. B., Wickens C., Khan M., Cowen L. E., Federspiel N., Jones T., Kohn L. M. Infrequent genetic exchange and recombination in the mitochondrial genome of Candida albicans. J Bacteriol. 2001 Feb;183(3):865–872. doi: 10.1128/JB.183.3.865-872.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J. M., Soll D. R. Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol. 1987 Dec;169(12):5579–5588. doi: 10.1128/jb.169.12.5579-5588.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson J., Srikantha T., Morrow B., Miyasaki S. H., White T. C., Agabian N., Schmid J., Soll D. R. Characterization and partial nucleotide sequence of the DNA fingerprinting probe Ca3 of Candida albicans. J Clin Microbiol. 1993 Jun;31(6):1472–1480. doi: 10.1128/jcm.31.6.1472-1480.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balan I., Alarco A. M., Raymond M. The Candida albicans CDR3 gene codes for an opaque-phase ABC transporter. J Bacteriol. 1997 Dec;179(23):7210–7218. doi: 10.1128/jb.179.23.7210-7218.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bedell G. W., Soll D. R. Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun. 1979 Oct;26(1):348–354. doi: 10.1128/iai.26.1.348-354.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blignaut Elaine, Pujol Claude, Lockhart Shawn, Joly Sophie, Soll David R. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J Clin Microbiol. 2002 Mar;40(3):826–836. doi: 10.1128/JCM.40.3.826-836.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gräser Y., Volovsek M., Arrington J., Schönian G., Presber W., Mitchell T. G., Vilgalys R. Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12473–12477. doi: 10.1073/pnas.93.22.12473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hull C. M., Johnson A. D. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science. 1999 Aug 20;285(5431):1271–1275. doi: 10.1126/science.285.5431.1271. [DOI] [PubMed] [Google Scholar]
  9. Hull C. M., Raisner R. M., Johnson A. D. Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. Science. 2000 Jul 14;289(5477):307–310. doi: 10.1126/science.289.5477.307. [DOI] [PubMed] [Google Scholar]
  10. Lachke Salil A., Joly Sophie, Daniels Karla, Soll David R. Phenotypic switching and filamentation in Candida glabrata. Microbiology. 2002 Sep;148(Pt 9):2661–2674. doi: 10.1099/00221287-148-9-2661. [DOI] [PubMed] [Google Scholar]
  11. Lockhart S. R., Fritch J. J., Meier A. S., Schröppel K., Srikantha T., Galask R., Soll D. R. Colonizing populations of Candida albicans are clonal in origin but undergo microevolution through C1 fragment reorganization as demonstrated by DNA fingerprinting and C1 sequencing. J Clin Microbiol. 1995 Jun;33(6):1501–1509. doi: 10.1128/jcm.33.6.1501-1509.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lockhart S. R., Reed B. D., Pierson C. L., Soll D. R. Most frequent scenario for recurrent Candida vaginitis is strain maintenance with "substrain shuffling": demonstration by sequential DNA fingerprinting with probes Ca3, C1, and CARE2. J Clin Microbiol. 1996 Apr;34(4):767–777. doi: 10.1128/jcm.34.4.767-777.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller Mathew G., Johnson Alexander D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell. 2002 Aug 9;110(3):293–302. doi: 10.1016/s0092-8674(02)00837-1. [DOI] [PubMed] [Google Scholar]
  14. Morrow B., Srikantha T., Anderson J., Soll D. R. Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect Immun. 1993 May;61(5):1823–1828. doi: 10.1128/iai.61.5.1823-1828.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrow B., Srikantha T., Soll D. R. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol. 1992 Jul;12(7):2997–3005. doi: 10.1128/mcb.12.7.2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pujol C., Joly S., Nolan B., Srikantha T., Soll D. R. Microevolutionary changes in Candida albicans identified by the complex Ca3 fingerprinting probe involve insertions and deletions of the full-length repetitive sequence RPS at specific genomic sites. Microbiology. 1999 Oct;145(Pt 10):2635–2646. doi: 10.1099/00221287-145-10-2635. [DOI] [PubMed] [Google Scholar]
  17. Pujol C., Reynes J., Renaud F., Raymond M., Tibayrenc M., Ayala F. J., Janbon F., Mallié M., Bastide J. M. The yeast Candida albicans has a clonal mode of reproduction in a population of infected human immunodeficiency virus-positive patients. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9456–9459. doi: 10.1073/pnas.90.20.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pujol Claude, Pfaller Michael, Soll David R. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J Clin Microbiol. 2002 Aug;40(8):2729–2740. doi: 10.1128/JCM.40.8.2729-2740.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scherer S., Stevens D. A. Application of DNA typing methods to epidemiology and taxonomy of Candida species. J Clin Microbiol. 1987 Apr;25(4):675–679. doi: 10.1128/jcm.25.4.675-679.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schmid J., Voss E., Soll D. R. Computer-assisted methods for assessing strain relatedness in Candida albicans by fingerprinting with the moderately repetitive sequence Ca3. J Clin Microbiol. 1990 Jun;28(6):1236–1243. doi: 10.1128/jcm.28.6.1236-1243.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Slutsky B., Buffo J., Soll D. R. High-frequency switching of colony morphology in Candida albicans. Science. 1985 Nov 8;230(4726):666–669. doi: 10.1126/science.3901258. [DOI] [PubMed] [Google Scholar]
  22. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., Soll D. R. "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol. 1987 Jan;169(1):189–197. doi: 10.1128/jb.169.1.189-197.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Soll D. R., Galask R., Schmid J., Hanna C., Mac K., Morrow B. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol. 1991 Aug;29(8):1702–1710. doi: 10.1128/jcm.29.8.1702-1710.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Soll D. R. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992 Apr;5(2):183–203. doi: 10.1128/cmr.5.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soll D. R., Staebell M., Langtimm C., Pfaller M., Hicks J., Rao T. V. Multiple Candida strains in the course of a single systemic infection. J Clin Microbiol. 1988 Aug;26(8):1448–1459. doi: 10.1128/jcm.26.8.1448-1459.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Srikantha T., Soll D. R. A white-specific gene in the white-opaque switching system of Candida albicans. Gene. 1993 Sep 6;131(1):53–60. doi: 10.1016/0378-1119(93)90668-s. [DOI] [PubMed] [Google Scholar]
  27. Whelan W. L., Soll D. R. Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine biosynthesis. Mol Gen Genet. 1982;187(3):477–485. doi: 10.1007/BF00332632. [DOI] [PubMed] [Google Scholar]
  28. Zhao Rui, Lockhart Shawn R., Daniels Karla, Soll David R. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell. 2002 Jun;1(3):353–365. doi: 10.1128/EC.1.3.353-365.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES