Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):747–753. doi: 10.1093/genetics/162.2.747

Recombination at his-3 in Neurospora declines exponentially with distance from the initiator, cog.

P Jane Yeadon 1, L Y Koh 1, F J Bowring 1, J P Rasmussen 1, D E A Catcheside 1
PMCID: PMC1462284  PMID: 12399385

Abstract

By deletion of 1.8 kb of sequence between cog(L) and his-3 and replacement with sequences of different lengths, we have generated a set of Neurospora strains in which the distance between cog(L) and the site at which recombination is selected varies from 1.7 to nearly 6 kb. Each of the manipulated strains includes cog(L), a highly active recombination hotspot, and rec-2, thus allowing high-frequency recombination. In addition, each is a his-3 mutant, either K26 or K480. The frequency of His(+) recombinants in progeny of these crosses is inversely proportional to the distance between his-3 and cog. Specifically, there is a linear relationship between log(10) (recombination frequency) and the distance in base pairs, indicating that as distance decreases, the rate of interallelic recombination increases exponentially. An exponential relationship between distance separating markers and the chance of co-conversion has been found in both Drosophila and fission yeast, indicating that the extension of recombination events may be a stochastic process in most organisms. On the basis of these and additional data presented in this article, we conclude that recombination is initiated at cog(L) in >17% of meioses, that most conversion tracts are very short, and that few extend >14 kb.

Full Text

The Full Text of this article is available as a PDF (147.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel T., Austin B., Catcheside D. G. Regulation of recombination at the his-3 locus in Neurospora crassa. Aust J Biol Sci. 1970 Dec;23(6):1229–1240. doi: 10.1071/bi9701229. [DOI] [PubMed] [Google Scholar]
  2. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bowring F. J., Catcheside D. E. Gene conversion alone accounts for more than 90% of recombination events at the am locus of Neurospora crassa. Genetics. 1996 May;143(1):129–136. doi: 10.1093/genetics/143.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowring F. J., Catcheside D. E. The initiation site for recombination cog is at the 3' end of the his-3 gene in Neurospora crassa. Mol Gen Genet. 1991 Oct;229(2):273–277. doi: 10.1007/BF00272166. [DOI] [PubMed] [Google Scholar]
  5. Case M. E., Giles N. H. EVIDENCE FROM TETRAD ANALYSIS FOR BOTH NORMAL AND ABERRANT RECOMBINATION BETWEEN ALLELIC MUTANTS IN Neurospora Crassa. Proc Natl Acad Sci U S A. 1958 May;44(5):378–390. doi: 10.1073/pnas.44.5.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Catcheside D. E. Control of recombination within the nitrate-2 locus of Neurospora crassa: an unlinked dominant gene which reduces prototroph yields. Aust J Biol Sci. 1970 Aug;23(4):855–865. doi: 10.1071/bi9700855. [DOI] [PubMed] [Google Scholar]
  7. Catcheside D. G., Angel T. A histidine-3 mutant, in Neurospora crassa, due to an interchange. Aust J Biol Sci. 1974 Apr;27(2):219–229. doi: 10.1071/bi9740219. [DOI] [PubMed] [Google Scholar]
  8. Detloff P., Petes T. D. Measurements of excision repair tracts formed during meiotic recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Apr;12(4):1805–1814. doi: 10.1128/mcb.12.4.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Detloff P., White M. A., Petes T. D. Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics. 1992 Sep;132(1):113–123. doi: 10.1093/genetics/132.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fogel S., Hurst D. D. Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics. 1967 Oct;57(2):455–481. doi: 10.1093/genetics/57.2.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hilliker A. J., Harauz G., Reaume A. G., Gray M., Clark S. H., Chovnick A. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics. 1994 Aug;137(4):1019–1026. doi: 10.1093/genetics/137.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  13. Malone R. E., Kim S., Bullard S. A., Lundquist S., Hutchings-Crow L., Cramton S., Lutfiyya L., Lee J. Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics. 1994 May;137(1):5–18. doi: 10.1093/genetics/137.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
  15. Orbach M. J. A cosmid with a HyR marker for fungal library construction and screening. Gene. 1994 Dec 2;150(1):159–162. doi: 10.1016/0378-1119(94)90877-x. [DOI] [PubMed] [Google Scholar]
  16. Porter S. E., White M. A., Petes T. D. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics. 1993 May;134(1):5–19. doi: 10.1093/genetics/134.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rasmussen J. Paul, Bowring Frederick J., Yeadon P. Jane, Catcheside David E. A. Targeting vectors for gene diversification by meiotic recombination in Neurospora crassa. Plasmid. 2002 Jan;47(1):18–25. doi: 10.1006/plas.2001.1549. [DOI] [PubMed] [Google Scholar]
  18. SUYAMA Y., MUNKRES K. D., WOODWARD V. W. Genetic analyses of the pyr-3 locus of Neurospora crassa: the bearing of recombination and gene conversion upon intraallelic linearity. Genetica. 1959;30:293–311. doi: 10.1007/BF01535681. [DOI] [PubMed] [Google Scholar]
  19. Sachs M. S., Selker E. U., Lin B., Roberts C. J., Luo Z., Vaught-Alexander D., Margolin B. S. Expression of herpes virus thymidine kinase in Neurospora crassa. Nucleic Acids Res. 1997 Jun 15;25(12):2389–2395. doi: 10.1093/nar/25.12.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schultes N. P., Szostak J. W. Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics. 1990 Dec;126(4):813–822. doi: 10.1093/genetics/126.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stadler D R. Gene Conversion of Cysteine Mutants in Neurospora. Genetics. 1959 Jul;44(4):647–656. doi: 10.1093/genetics/44.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  23. Xu L., Kleckner N. Sequence non-specific double-strand breaks and interhomolog interactions prior to double-strand break formation at a meiotic recombination hot spot in yeast. EMBO J. 1995 Oct 16;14(20):5115–5128. doi: 10.1002/j.1460-2075.1995.tb00194.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yeadon P. J., Catcheside D. E. Long, interrupted conversion tracts initiated by cog in Neurospora crassa. Genetics. 1998 Jan;148(1):113–122. doi: 10.1093/genetics/148.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yeadon P. J., Catcheside D. E. Polymorphism around cog extends into adjacent structural genes. Curr Genet. 1999 Jul;35(6):631–637. doi: 10.1007/s002940050462. [DOI] [PubMed] [Google Scholar]
  26. Yeadon P. J., Catcheside D. E. The chromosomal region which includes the recombinator cog in Neurospora crassa is highly polymorphic. Curr Genet. 1995 Jul;28(2):155–163. doi: 10.1007/BF00315782. [DOI] [PubMed] [Google Scholar]
  27. Yeadon P. J., Rasmussen J. P., Catcheside D. E. Recombination events in Neurospora crassa may cross a translocation breakpoint by a template-switching mechanism. Genetics. 2001 Oct;159(2):571–579. doi: 10.1093/genetics/159.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zahn-Zabal M., Lehmann E., Kohli J. Hot spots of recombination in fission yeast: inactivation of the M26 hot spot by deletion of the ade6 promoter and the novel hotspot ura4-aim. Genetics. 1995 Jun;140(2):469–478. doi: 10.1093/genetics/140.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Massy B., Rocco V., Nicolas A. The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 15;14(18):4589–4598. doi: 10.1002/j.1460-2075.1995.tb00138.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES