Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):533–542. doi: 10.1093/genetics/162.2.533

Molecular basis of adaptive convergence in experimental populations of RNA viruses.

José M Cuevas 1, Santiago F Elena 1, Andrés Moya 1
PMCID: PMC1462289  PMID: 12399369

Abstract

Characterizing the molecular basis of adaptation is one of the most important goals in modern evolutionary genetics. Here, we report a full-genome sequence analysis of 21 independent populations of vesicular stomatitis ribovirus evolved on the same cell type but under different demographic regimes. Each demographic regime differed in the effective viral population size. Evolutionary convergences are widespread both at synonymous and nonsynonymous replacements as well as in an intergenic region. We also found evidence for epistasis among sites of the same and different loci. We explain convergences as the consequence of four factors: (1) environmental homogeneity that supposes an identical challenge for each population, (2) structural constraints within the genome, (3) epistatic interactions among sites that create the observed pattern of covariation, and (4) the phenomenon of clonal interference among competing genotypes carrying different beneficial mutations. Using these convergences, we have been able to estimate the fitness contribution of the identified mutations and epistatic groups. Keeping in mind statistical uncertainties, these estimates suggest that along with several beneficial mutations of major effect, many other mutations got fixed as part of a group of epistatic mutations.

Full Text

The Full Text of this article is available as a PDF (240.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boucher C. A., O'Sullivan E., Mulder J. W., Ramautarsing C., Kellam P., Darby G., Lange J. M., Goudsmit J., Larder B. A. Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects. J Infect Dis. 1992 Jan;165(1):105–110. doi: 10.1093/infdis/165.1.105. [DOI] [PubMed] [Google Scholar]
  2. Bracho M. A., Moya A., Barrio E. Contribution of Taq polymerase-induced errors to the estimation of RNA virus diversity. J Gen Virol. 1998 Dec;79(Pt 12):2921–2928. doi: 10.1099/0022-1317-79-12-2921. [DOI] [PubMed] [Google Scholar]
  3. Bull J. J., Badgett M. R., Wichman H. A., Huelsenbeck J. P., Hillis D. M., Gulati A., Ho C., Molineux I. J. Exceptional convergent evolution in a virus. Genetics. 1997 Dec;147(4):1497–1507. doi: 10.1093/genetics/147.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chao L. Evolution of sex in RNA viruses. J Theor Biol. 1988 Jul 8;133(1):99–112. doi: 10.1016/s0022-5193(88)80027-4. [DOI] [PubMed] [Google Scholar]
  5. Charlesworth B. The effect of synergistic epistasis on the inbreeding load. Genet Res. 1998 Feb;71(1):85–89. doi: 10.1017/s0016672398003140. [DOI] [PubMed] [Google Scholar]
  6. Condra J. H., Holder D. J., Schleif W. A., Blahy O. M., Danovich R. M., Gabryelski L. J., Graham D. J., Laird D., Quintero J. C., Rhodes A. Genetic correlates of in vivo viral resistance to indinavir, a human immunodeficiency virus type 1 protease inhibitor. J Virol. 1996 Dec;70(12):8270–8276. doi: 10.1128/jvi.70.12.8270-8276.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elena S. F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J Mol Evol. 1999 Nov;49(5):703–707. doi: 10.1007/pl00000082. [DOI] [PubMed] [Google Scholar]
  8. Eyre-Walker A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics. 1999 Jun;152(2):675–683. doi: 10.1093/genetics/152.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fares M. A., Moya A., Escarmís C., Baranowski E., Domingo E., Barrio E. Evidence for positive selection in the capsid protein-coding region of the foot-and-mouth disease virus (FMDV) subjected to experimental passage regimens. Mol Biol Evol. 2001 Jan;18(1):10–21. doi: 10.1093/oxfordjournals.molbev.a003715. [DOI] [PubMed] [Google Scholar]
  10. Fay J. C., Wyckoff G. J., Wu C. I. Positive and negative selection on the human genome. Genetics. 2001 Jul;158(3):1227–1234. doi: 10.1093/genetics/158.3.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gerrish P. J., Lenski R. E. The fate of competing beneficial mutations in an asexual population. Genetica. 1998;102-103(1-6):127–144. [PubMed] [Google Scholar]
  12. Hofmann-Lehmann Regina, Vlasak Josef, Chenine Agnès-Laurence, Li Pei-Lin, Baba Timothy W., Montefiori David C., McClure Harold M., Anderson Daniel C., Ruprecht Ruth M. Molecular evolution of human immunodeficiency virus env in humans and monkeys: similar patterns occur during natural disease progression or rapid virus passage. J Virol. 2002 May;76(10):5278–5284. doi: 10.1128/JVI.76.10.5278-5284.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holland J. J., de la Torre J. C., Clarke D. K., Duarte E. Quantitation of relative fitness and great adaptability of clonal populations of RNA viruses. J Virol. 1991 Jun;65(6):2960–2967. doi: 10.1128/jvi.65.6.2960-2967.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holmes Edward C., Moya Andrés. Is the quasispecies concept relevant to RNA viruses? J Virol. 2002 Jan;76(1):460–465. doi: 10.1128/JVI.76.1.460-462.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jenkins G. M., Worobey M., Woelk C. H., Holmes E. C. Evidence for the non-quasispecies evolution of RNA viruses [corrected]. Mol Biol Evol. 2001 Jun;18(6):987–994. doi: 10.1093/oxfordjournals.molbev.a003900. [DOI] [PubMed] [Google Scholar]
  16. Kellam P., Boucher C. A., Tijnagel J. M., Larder B. A. Zidovudine treatment results in the selection of human immunodeficiency virus type 1 variants whose genotypes confer increasing levels of drug resistance. J Gen Virol. 1994 Feb;75(Pt 2):341–351. doi: 10.1099/0022-1317-75-2-341. [DOI] [PubMed] [Google Scholar]
  17. Kondrashov A. S., Crow J. F. Haploidy or diploidy: which is better? Nature. 1991 May 23;351(6324):314–315. doi: 10.1038/351314a0. [DOI] [PubMed] [Google Scholar]
  18. Kondrashov A. S. Deleterious mutations as an evolutionary factor. II. Facultative apomixis and selfing. Genetics. 1985 Nov;111(3):635–653. doi: 10.1093/genetics/111.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Larder B. A., Coates K. E., Kemp S. D. Zidovudine-resistant human immunodeficiency virus selected by passage in cell culture. J Virol. 1991 Oct;65(10):5232–5236. doi: 10.1128/jvi.65.10.5232-5236.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lenski R. E., Souza V., Duong L. P., Phan Q. G., Nguyen T. N., Bertrand K. P. Epistatic effects of promoter and repressor functions of the Tn10 tetracycline-resistance operon of the fitness of Escherichia coli. Mol Ecol. 1994 Apr;3(2):127–135. doi: 10.1111/j.1365-294x.1994.tb00113.x. [DOI] [PubMed] [Google Scholar]
  21. Martinez-Picado J., DePasquale M. P., Kartsonis N., Hanna G. J., Wong J., Finzi D., Rosenberg E., Gunthard H. F., Sutton L., Savara A. Antiretroviral resistance during successful therapy of HIV type 1 infection. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10948–10953. doi: 10.1073/pnas.97.20.10948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Martinez-Picado J., Savara A. V., Sutton L., D'Aquila R. T. Replicative fitness of protease inhibitor-resistant mutants of human immunodeficiency virus type 1. J Virol. 1999 May;73(5):3744–3752. doi: 10.1128/jvi.73.5.3744-3752.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKnight K. L., Lemon S. M. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA. 1998 Dec;4(12):1569–1584. doi: 10.1017/s1355838298981006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miralles R., Gerrish P. J., Moya A., Elena S. F. Clonal interference and the evolution of RNA viruses. Science. 1999 Sep 10;285(5434):1745–1747. doi: 10.1126/science.285.5434.1745. [DOI] [PubMed] [Google Scholar]
  25. Miralles R., Moya A., Elena S. F. Diminishing returns of population size in the rate of RNA virus adaptation. J Virol. 2000 Apr;74(8):3566–3571. doi: 10.1128/jvi.74.8.3566-3571.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Molla A., Korneyeva M., Gao Q., Vasavanonda S., Schipper P. J., Mo H. M., Markowitz M., Chernyavskiy T., Niu P., Lyons N. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med. 1996 Jul;2(7):760–766. doi: 10.1038/nm0796-760. [DOI] [PubMed] [Google Scholar]
  27. Nijhuis M., Schuurman R., de Jong D., Erickson J., Gustchina E., Albert J., Schipper P., Gulnik S., Boucher C. A. Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS. 1999 Dec 3;13(17):2349–2359. doi: 10.1097/00002030-199912030-00006. [DOI] [PubMed] [Google Scholar]
  28. Peck J. R., Waxman D. Mutation and sex in a competitive world. Nature. 2000 Jul 27;406(6794):399–404. doi: 10.1038/35019055. [DOI] [PubMed] [Google Scholar]
  29. Stillman E. A., Whitt M. A. Mutational analyses of the intergenic dinucleotide and the transcriptional start sequence of vesicular stomatitis virus (VSV) define sequences required for efficient termination and initiation of VSV transcripts. J Virol. 1997 Mar;71(3):2127–2137. doi: 10.1128/jvi.71.3.2127-2137.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stillman E. A., Whitt M. A. The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. J Virol. 1998 Jul;72(7):5565–5572. doi: 10.1128/jvi.72.7.5565-5572.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wichman H. A., Badgett M. R., Scott L. A., Boulianne C. M., Bull J. J. Different trajectories of parallel evolution during viral adaptation. Science. 1999 Jul 16;285(5426):422–424. doi: 10.1126/science.285.5426.422. [DOI] [PubMed] [Google Scholar]
  32. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES