Skip to main content
Genetics logoLink to Genetics
. 2002 Oct;162(2):579–589. doi: 10.1093/genetics/162.2.579

Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae.

Saumitri Bhattacharyya 1, Michael L Rolfsmeier 1, Michael J Dixon 1, Kara Wagoner 1, Robert S Lahue 1
PMCID: PMC1462295  PMID: 12399373

Abstract

Trinucleotide repeats (TNRs) undergo frequent mutations in families affected by TNR diseases and in model organisms. Much of the instability is conferred in cis by the sequence and length of the triplet tract. Trans-acting factors also modulate TNR instability risk, on the basis of such evidence as parent-of-origin effects. To help identify trans-acting modifiers, a screen was performed to find yeast mutants with altered CTG.CAG repeat mutation frequencies. The RTG2 gene was identified as one such modifier. In rtg2 mutants, expansions of CTG.CAG repeats show a modest increase in rate, depending on the starting tract length. Surprisingly, contractions were suppressed in an rtg2 background. This creates a situation in a model system where expansions outnumber contractions, as in humans. The rtg2 phenotype was apparently specific for CTG.CAG repeat instability, since no changes in mutation rate were observed for dinucleotide repeats or at the CAN1 reporter gene. This feature sets rtg2 mutants apart from most other mutants that affect genetic stability both for TNRs and at other DNA sequences. It was also found that RTG2 acts independently of its normal partners RTG1 and RTG3, suggesting a novel function of RTG2 that helps modify CTG.CAG repeat mutation risk.

Full Text

The Full Text of this article is available as a PDF (159.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bork P., Sander C., Valencia A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7290–7294. doi: 10.1073/pnas.89.16.7290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burns N., Grimwade B., Ross-Macdonald P. B., Choi E. Y., Finberg K., Roeder G. S., Snyder M. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 1994 May 1;8(9):1087–1105. doi: 10.1101/gad.8.9.1087. [DOI] [PubMed] [Google Scholar]
  3. Campuzano V., Montermini L., Moltò M. D., Pianese L., Cossée M., Cavalcanti F., Monros E., Rodius F., Duclos F., Monticelli A. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996 Mar 8;271(5254):1423–1427. doi: 10.1126/science.271.5254.1423. [DOI] [PubMed] [Google Scholar]
  4. Chong S. S., Almqvist E., Telenius H., LaTray L., Nichol K., Bourdelat-Parks B., Goldberg Y. P., Haddad B. R., Richards F., Sillence D. Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease: evidence from single sperm analyses. Hum Mol Genet. 1997 Feb;6(2):301–309. doi: 10.1093/hmg/6.2.301. [DOI] [PubMed] [Google Scholar]
  5. Cummings C. J., Zoghbi H. Y. Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet. 2000 Apr 12;9(6):909–916. doi: 10.1093/hmg/9.6.909. [DOI] [PubMed] [Google Scholar]
  6. Freudenreich C. H., Kantrow S. M., Zakian V. A. Expansion and length-dependent fragility of CTG repeats in yeast. Science. 1998 Feb 6;279(5352):853–856. doi: 10.1126/science.279.5352.853. [DOI] [PubMed] [Google Scholar]
  7. Freudenreich C. H., Stavenhagen J. B., Zakian V. A. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol Cell Biol. 1997 Apr;17(4):2090–2098. doi: 10.1128/mcb.17.4.2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gacy A. M., Goellner G., Juranić N., Macura S., McMurray C. T. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell. 1995 May 19;81(4):533–540. doi: 10.1016/0092-8674(95)90074-8. [DOI] [PubMed] [Google Scholar]
  9. Gavin Anne-Claude, Bösche Markus, Krause Roland, Grandi Paola, Marzioch Martina, Bauer Andreas, Schultz Jörg, Rick Jens M., Michon Anne-Marie, Cruciat Cristina-Maria. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002 Jan 10;415(6868):141–147. doi: 10.1038/415141a. [DOI] [PubMed] [Google Scholar]
  10. Henderson S. T., Petes T. D. Instability of simple sequence DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1992 Jun;12(6):2749–2757. doi: 10.1128/mcb.12.6.2749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jankowski C., Nasar F., Nag D. K. Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2134–2139. doi: 10.1073/pnas.040460297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaworski A., Rosche W. A., Gellibolian R., Kang S., Shimizu M., Bowater R. P., Sinden R. R., Wells R. D. Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11019–11023. doi: 10.1073/pnas.92.24.11019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jia Y., Rothermel B., Thornton J., Butow R. A. A basic helix-loop-helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol. 1997 Mar;17(3):1110–1117. doi: 10.1128/mcb.17.3.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jin P., Warren S. T. Understanding the molecular basis of fragile X syndrome. Hum Mol Genet. 2000 Apr 12;9(6):901–908. doi: 10.1093/hmg/9.6.901. [DOI] [PubMed] [Google Scholar]
  15. Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science. 1995 Jul 14;269(5221):238–240. doi: 10.1126/science.7618086. [DOI] [PubMed] [Google Scholar]
  16. Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
  17. Kokoska R. J., Stefanovic L., Tran H. T., Resnick M. A., Gordenin D. A., Petes T. D. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol Cell Biol. 1998 May;18(5):2779–2788. doi: 10.1128/mcb.18.5.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kovtun I. V., McMurray C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet. 2001 Apr;27(4):407–411. doi: 10.1038/86906. [DOI] [PubMed] [Google Scholar]
  19. Kovtun I. V., Therneau T. M., McMurray C. T. Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington's disease gene. Hum Mol Genet. 2000 Nov 1;9(18):2767–2775. doi: 10.1093/hmg/9.18.2767. [DOI] [PubMed] [Google Scholar]
  20. Kramer P. R., Pearson C. E., Sinden R. R. Stability of triplet repeats of myotonic dystrophy and fragile X loci in human mutator mismatch repair cell lines. Hum Genet. 1996 Aug;98(2):151–157. doi: 10.1007/s004390050179. [DOI] [PubMed] [Google Scholar]
  21. La Spada A. R., Peterson K. R., Meadows S. A., McClain M. E., Jeng G., Chmelar R. S., Haugen H. A., Chen K., Singer M. J., Moore D. Androgen receptor YAC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet. 1998 Jun;7(6):959–967. doi: 10.1093/hmg/7.6.959. [DOI] [PubMed] [Google Scholar]
  22. Leeflang E. P., Tavaré S., Marjoram P., Neal C. O., Srinidhi J., MacFarlane H., MacDonald M. E., Gusella J. F., de Young M., Wexler N. S. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum Mol Genet. 1999 Feb;8(2):173–183. doi: 10.1093/hmg/8.2.173. [DOI] [PubMed] [Google Scholar]
  23. Liao X., Butow R. A. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993 Jan 15;72(1):61–71. doi: 10.1016/0092-8674(93)90050-z. [DOI] [PubMed] [Google Scholar]
  24. Liu Z., Butow R. A. A transcriptional switch in the expression of yeast tricarboxylic acid cycle genes in response to a reduction or loss of respiratory function. Mol Cell Biol. 1999 Oct;19(10):6720–6728. doi: 10.1128/mcb.19.10.6720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Liu Z., Sekito T., Epstein C. B., Butow R. A. RTG-dependent mitochondria to nucleus signaling is negatively regulated by the seven WD-repeat protein Lst8p. EMBO J. 2001 Dec 17;20(24):7209–7219. doi: 10.1093/emboj/20.24.7209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mangiarini L., Sathasivam K., Mahal A., Mott R., Seller M., Bates G. P. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet. 1997 Feb;15(2):197–200. doi: 10.1038/ng0297-197. [DOI] [PubMed] [Google Scholar]
  27. Manley K., Shirley T. L., Flaherty L., Messer A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nat Genet. 1999 Dec;23(4):471–473. doi: 10.1038/70598. [DOI] [PubMed] [Google Scholar]
  28. McMurray C. T. Mechanisms of DNA expansion. Chromosoma. 1995 Oct;104(1):2–13. doi: 10.1007/BF00352220. [DOI] [PubMed] [Google Scholar]
  29. Miret J. J., Pessoa-Brandão L., Lahue R. S. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12438–12443. doi: 10.1073/pnas.95.21.12438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Monckton D. G., Coolbaugh M. I., Ashizawa K. T., Siciliano M. J., Caskey C. T. Hypermutable myotonic dystrophy CTG repeats in transgenic mice. Nat Genet. 1997 Feb;15(2):193–196. doi: 10.1038/ng0297-193. [DOI] [PubMed] [Google Scholar]
  31. Parikh V. S., Morgan M. M., Scott R., Clements L. S., Butow R. A. The mitochondrial genotype can influence nuclear gene expression in yeast. Science. 1987 Jan 30;235(4788):576–580. doi: 10.1126/science.3027892. [DOI] [PubMed] [Google Scholar]
  32. Parniewski P., Jaworski A., Wells R. D., Bowater R. P. Length of CTG.CAG repeats determines the influence of mismatch repair on genetic instability. J Mol Biol. 2000 Jun 16;299(4):865–874. doi: 10.1006/jmbi.2000.3796. [DOI] [PubMed] [Google Scholar]
  33. Paulson H. L., Fischbeck K. H. Trinucleotide repeats in neurogenetic disorders. Annu Rev Neurosci. 1996;19:79–107. doi: 10.1146/annurev.ne.19.030196.000455. [DOI] [PubMed] [Google Scholar]
  34. Pierce M. M., Maddelein M. L., Roberts B. T., Wickner R. B. A novel Rtg2p activity regulates nitrogen catabolism in yeast. Proc Natl Acad Sci U S A. 2001 Oct 30;98(23):13213–13218. doi: 10.1073/pnas.181486098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Richard G. F., Goellner G. M., McMurray C. T., Haber J. E. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 2000 May 15;19(10):2381–2390. doi: 10.1093/emboj/19.10.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Richards R. I., Sutherland G. R. Simple repeat DNA is not replicated simply. Nat Genet. 1994 Feb;6(2):114–116. doi: 10.1038/ng0294-114. [DOI] [PubMed] [Google Scholar]
  37. Rolfsmeier M. L., Dixon M. J., Lahue R. S. Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast. Mol Cell. 2000 Dec;6(6):1501–1507. doi: 10.1016/s1097-2765(00)00146-5. [DOI] [PubMed] [Google Scholar]
  38. Rolfsmeier M. L., Dixon M. J., Pessoa-Brandão L., Pelletier R., Miret J. J., Lahue R. S. Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics. 2001 Apr;157(4):1569–1579. doi: 10.1093/genetics/157.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rolfsmeier M. L., Lahue R. S. Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol. 2000 Jan;20(1):173–180. doi: 10.1128/mcb.20.1.173-180.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sakamoto N., Chastain P. D., Parniewski P., Ohshima K., Pandolfo M., Griffith J. D., Wells R. D. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. Mol Cell. 1999 Apr;3(4):465–475. doi: 10.1016/s1097-2765(00)80474-8. [DOI] [PubMed] [Google Scholar]
  41. Sarkar P. S., Chang H. C., Boudi F. B., Reddy S. CTG repeats show bimodal amplification in E. coli. Cell. 1998 Nov 13;95(4):531–540. doi: 10.1016/s0092-8674(00)81620-7. [DOI] [PubMed] [Google Scholar]
  42. Sato T., Oyake M., Nakamura K., Nakao K., Fukusima Y., Onodera O., Igarashi S., Takano H., Kikugawa K., Ishida Y. Transgenic mice harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum Mol Genet. 1999 Jan;8(1):99–106. doi: 10.1093/hmg/8.1.99. [DOI] [PubMed] [Google Scholar]
  43. Schmidt K. H., Abbott C. M., Leach D. R. Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli. Mol Microbiol. 2000 Jan;35(2):463–471. doi: 10.1046/j.1365-2958.2000.01727.x. [DOI] [PubMed] [Google Scholar]
  44. Seznec H., Lia-Baldini A. S., Duros C., Fouquet C., Lacroix C., Hofmann-Radvanyi H., Junien C., Gourdon G. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum Mol Genet. 2000 May 1;9(8):1185–1194. doi: 10.1093/hmg/9.8.1185. [DOI] [PubMed] [Google Scholar]
  45. Shelbourne P. F., Killeen N., Hevner R. F., Johnston H. M., Tecott L., Lewandoski M., Ennis M., Ramirez L., Li Z., Iannicola C. A Huntington's disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum Mol Genet. 1999 May;8(5):763–774. doi: 10.1093/hmg/8.5.763. [DOI] [PubMed] [Google Scholar]
  46. Strand M., Prolla T. A., Liskay R. M., Petes T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993 Sep 16;365(6443):274–276. doi: 10.1038/365274a0. [DOI] [PubMed] [Google Scholar]
  47. Tishkoff D. X., Filosi N., Gaida G. M., Kolodner R. D. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 1997 Jan 24;88(2):253–263. doi: 10.1016/s0092-8674(00)81846-2. [DOI] [PubMed] [Google Scholar]
  48. Tran H. T., Keen J. D., Kricker M., Resnick M. A., Gordenin D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997 May;17(5):2859–2865. doi: 10.1128/mcb.17.5.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Usdin K., Grabczyk E. DNA repeat expansions and human disease. Cell Mol Life Sci. 2000 Jun;57(6):914–931. doi: 10.1007/PL00000734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wheeler V. C., Auerbach W., White J. K., Srinidhi J., Auerbach A., Ryan A., Duyao M. P., Vrbanac V., Weaver M., Gusella J. F. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum Mol Genet. 1999 Jan;8(1):115–122. doi: 10.1093/hmg/8.1.115. [DOI] [PubMed] [Google Scholar]
  51. White P. J., Borts R. H., Hirst M. C. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol. 1999 Aug;19(8):5675–5684. doi: 10.1128/mcb.19.8.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wierdl M., Dominska M., Petes T. D. Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics. 1997 Jul;146(3):769–779. doi: 10.1093/genetics/146.3.769. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES