Abstract
We investigated the mitochondrial DNA (mtDNA) composition in one of the largest adult somatic mammalian clones (n = 20) reported so far. The healthy cloned cattle were derived from nuclear transfer of an identical nuclear genetic background (mural granulosa donor cells including surrounding cytoplasm) into enucleated oocytes with either Bos indicus or B. taurus mtDNA. Here we report the first cases of coexisting mtDNAs of two closely related subspecies following nuclear transfer. Heteroplasmy (0.6-2.8%) was found in 4 out of 11 cross-subspecies cloned cattle. Quantitation was performed using "amplification refractory mutation system (ARMS) allele-specific real-time PCR." We determined that the ratio of donor cell to recipient cytoplast mtDNA copy number was 0.9% before nuclear transfer. Therefore, we concluded that the percentage of donor cell mtDNA in the heteroplasmic intersubspecific cloned animals is in accordance with neutral transmission of donor mtDNA. We determined an amino acid sequence divergence of up to 1.3% for the two subspecies-specific mtDNA haplotypes. In addition, intrasubspecific B. indicus heteroplasmy of approximately 1% (but up to 7.3 and 12.7% in muscle and follicular cells of one animal) was detected in 7 out of the 9 B. indicus intrasubspecific cloned cattle.
Full Text
The Full Text of this article is available as a PDF (117.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensasson D., Zhang D. -X., Hartl D. L., Hewitt G. M. Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends Ecol Evol. 2001 Jun 1;16(6):314–321. doi: 10.1016/s0169-5347(01)02151-6. [DOI] [PubMed] [Google Scholar]
- Blier P. U., Dufresne F., Burton R. S. Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet. 2001 Jul;17(7):400–406. doi: 10.1016/s0168-9525(01)02338-1. [DOI] [PubMed] [Google Scholar]
- Chinnery P. F., Thorburn D. R., Samuels D. C., White S. L., Dahl H. M., Turnbull D. M., Lightowlers R. N., Howell N. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet. 2000 Nov;16(11):500–505. doi: 10.1016/s0168-9525(00)02120-x. [DOI] [PubMed] [Google Scholar]
- Evans M. J., Gurer C., Loike J. D., Wilmut I., Schnieke A. E., Schon E. A. Mitochondrial DNA genotypes in nuclear transfer-derived cloned sheep. Nat Genet. 1999 Sep;23(1):90–93. doi: 10.1038/12696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardner D. K., Lane M., Spitzer A., Batt P. A. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod. 1994 Feb;50(2):390–400. doi: 10.1095/biolreprod50.2.390. [DOI] [PubMed] [Google Scholar]
- Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice. Nature. 1991 Jul 18;352(6332):255–257. doi: 10.1038/352255a0. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
- Hiendleder S., Schmutz S. M., Erhardt G., Green R. D., Plante Y. Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol Reprod Dev. 1999 Sep;54(1):24–31. doi: 10.1002/(SICI)1098-2795(199909)54:1<24::AID-MRD4>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Lanza R. P., Cibelli J. B., Diaz F., Moraes C. T., Farin P. W., Farin C. E., Hammer C. J., West M. D., Damiani P. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning. 2000;2(2):79–90. doi: 10.1089/152045500436104. [DOI] [PubMed] [Google Scholar]
- Loi P., Ptak G., Barboni B., Fulka J., Jr, Cappai P., Clinton M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol. 2001 Oct;19(10):962–964. doi: 10.1038/nbt1001-962. [DOI] [PubMed] [Google Scholar]
- Meirelles F. V., Bordignon V., Watanabe Y., Watanabe M., Dayan A., Lôbo R. B., Garcia J. M., Smith L. C. Complete replacement of the mitochondrial genotype in a Bos indicus calf reconstructed by nuclear transfer to a Bos taurus oocyte. Genetics. 2001 May;158(1):351–356. doi: 10.1093/genetics/158.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagley P., Wei Y. H. Ageing and mammalian mitochondrial genetics. Trends Genet. 1998 Dec;14(12):513–517. doi: 10.1016/s0168-9525(98)01580-7. [DOI] [PubMed] [Google Scholar]
- Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page R. D. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
- Shitara H., Kaneda H., Sato A., Inoue K., Ogura A., Yonekawa H., Hayashi J. I. Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics. 2000 Nov;156(3):1277–1284. doi: 10.1093/genetics/156.3.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sligh J. E., Levy S. E., Waymire K. G., Allard P., Dillehay D. L., Nusinowitz S., Heckenlively J. R., MacGregor G. R., Wallace D. C. Maternal germ-line transmission of mutant mtDNAs from embryonic stem cell-derived chimeric mice. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14461–14466. doi: 10.1073/pnas.250491597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinborn R., Müller M., Brem G. Genetic variation in functionally important domains of the bovine mtDNA control region. Biochim Biophys Acta. 1998 May 11;1397(3):295–304. doi: 10.1016/s0167-4781(98)00019-0. [DOI] [PubMed] [Google Scholar]
- Steinborn R., Schinogl P., Zakhartchenko V., Achmann R., Schernthaner W., Stojkovic M., Wolf E., Müller M., Brem G. Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat Genet. 2000 Jul;25(3):255–257. doi: 10.1038/77000. [DOI] [PubMed] [Google Scholar]
- Steinborn R., Zakhartchenko V., Jelyazkov J., Klein D., Wolf E., Müller M., Brem G. Composition of parental mitochondrial DNA in cloned bovine embryos. FEBS Lett. 1998 Apr 24;426(3):352–356. doi: 10.1016/s0014-5793(98)00350-0. [DOI] [PubMed] [Google Scholar]
- Steinborn R., Zakhartchenko V., Wolf E., Müller M., Brem G. Non-balanced mix of mitochondrial DNA in cloned cattle produced by cytoplast-blastomere fusion. FEBS Lett. 1998 Apr 24;426(3):357–361. doi: 10.1016/s0014-5793(98)00351-2. [DOI] [PubMed] [Google Scholar]
- Sutovsky P., Moreno R. D., Ramalho-Santos J., Dominko T., Simerly C., Schatten G. Ubiquitin tag for sperm mitochondria. Nature. 1999 Nov 25;402(6760):371–372. doi: 10.1038/46466. [DOI] [PubMed] [Google Scholar]
- Takeda K., Takahashi S., Onishi A., Goto Y., Miyazawa A., Imai H. Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer. J Reprod Fertil. 1999 Jul;116(2):253–259. doi: 10.1530/jrf.0.1160253. [DOI] [PubMed] [Google Scholar]
- Thompson J. G., McNaughton C., Gasparrini B., McGowan L. T., Tervit H. R. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil. 2000 Jan;118(1):47–55. [PubMed] [Google Scholar]
- Troy C. S., MacHugh D. E., Bailey J. F., Magee D. A., Loftus R. T., Cunningham P., Chamberlain A. T., Sykes B. C., Bradley D. G. Genetic evidence for Near-Eastern origins of European cattle. Nature. 2001 Apr 26;410(6832):1088–1091. doi: 10.1038/35074088. [DOI] [PubMed] [Google Scholar]
- Wells D. N., Misica P. M., Tervit H. R. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod. 1999 Apr;60(4):996–1005. doi: 10.1095/biolreprod60.4.996. [DOI] [PubMed] [Google Scholar]
- Wells D. N., Misica P. M., Tervit H. R., Vivanco W. H. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod Fertil Dev. 1998;10(4):369–378. doi: 10.1071/r98109. [DOI] [PubMed] [Google Scholar]
- Wilmut Ian. Are there any normal cloned mammals? Nat Med. 2002 Mar;8(3):215–216. doi: 10.1038/nm0302-215. [DOI] [PubMed] [Google Scholar]
- Wu D. Y., Ugozzoli L., Pal B. K., Wallace R. B. Allele-specific enzymatic amplification of beta-globin genomic DNA for diagnosis of sickle cell anemia. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2757–2760. doi: 10.1073/pnas.86.8.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]