Abstract
Epistasis is a common and important phenomenon, as indicated by results from a number of recent experiments. Unfortunately, the discovery of epistatic quantitative trait loci (QTL) is difficult since one must search for multiple QTL simultaneously in two or more dimensions. Such a multidimensional search necessitates many statistical tests, and a high statistical threshold must be adopted to avoid false positives. Furthermore, the large number of (interaction) parameters in comparison with the number of observations results in a serious danger of overfitting and overinterpretation of the data. In this article we present a new statistical framework for mapping epistasis in inbred line crosses. It is based on reducing the high dimensionality of the problem in two ways. First, epistatic QTL are mapped in a one-dimensional genome scan for high interactions between QTL and the genetic background. Second, the dimension of the search is bounded by penalized likelihood methods. We use simulated backcross data to illustrate the new approach.
Full Text
The Full Text of this article is available as a PDF (130.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bink M., Uimari P., Sillanpä J., Janss G., Jansen C. Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet. 2002 Mar 7;104(5):751–762. doi: 10.1007/s00122-001-0796-x. [DOI] [PubMed] [Google Scholar]
- Carlborg O., Andersson L., Kinghorn B. The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics. 2000 Aug;155(4):2003–2010. doi: 10.1093/genetics/155.4.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du F. X., Hoeschele I. Estimation of additive, dominance and epistatic variance components using finite locus models implemented with a single-site Gibbs and a descent graph sampler. Genet Res. 2000 Oct;76(2):187–198. doi: 10.1017/s0016672300004614. [DOI] [PubMed] [Google Scholar]
- Fijneman R. J., Jansen R. C., van der Valk M. A., Demant P. High frequency of interactions between lung cancer susceptibility genes in the mouse: mapping of Sluc5 to Sluc14. Cancer Res. 1998 Nov 1;58(21):4794–4798. [PubMed] [Google Scholar]
- Fijneman R. J., de Vries S. S., Jansen R. C., Demant P. Complex interactions of new quantitative trait loci, Sluc1, Sluc2, Sluc3, and Sluc4, that influence the susceptibility to lung cancer in the mouse. Nat Genet. 1996 Dec;14(4):465–467. doi: 10.1038/ng1296-465. [DOI] [PubMed] [Google Scholar]
- Jannink J. L., Jansen R. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics. 2001 Jan;157(1):445–454. doi: 10.1093/genetics/157.1.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics. 1994 Nov;138(3):871–881. doi: 10.1093/genetics/138.3.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jansen R. C., Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics. 1994 Apr;136(4):1447–1455. doi: 10.1093/genetics/136.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lark K. G., Chase K., Adler F., Mansur L. M., Orf J. H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4656–4660. doi: 10.1073/pnas.92.10.4656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moen C. J., Groot P. C., Hart A. A., Snoek M., Demant P. Fine mapping of colon tumor susceptibility (Scc) genes in the mouse, different from the genes known to be somatically mutated in colon cancer. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1082–1086. doi: 10.1073/pnas.93.3.1082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagase H., Mao J. H., de Koning J. P., Minami T., Balmain A. Epistatic interactions between skin tumor modifier loci in interspecific (spretus/musculus) backcross mice. Cancer Res. 2001 Feb 15;61(4):1305–1308. [PubMed] [Google Scholar]
- Sen S., Churchill G. A. A statistical framework for quantitative trait mapping. Genetics. 2001 Sep;159(1):371–387. doi: 10.1093/genetics/159.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uimari P., Sillanpä M. J. Bayesian oligogenic analysis of quantitative and qualitative traits in general pedigrees. Genet Epidemiol. 2001 Nov;21(3):224–242. doi: 10.1002/gepi.1031. [DOI] [PubMed] [Google Scholar]
- Weller J. I., Song J. Z., Heyen D. W., Lewin H. A., Ron M. A new approach to the problem of multiple comparisons in the genetic dissection of complex traits. Genetics. 1998 Dec;150(4):1699–1706. doi: 10.1093/genetics/150.4.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Z. B., Kao C. H., Basten C. J. Estimating the genetic architecture of quantitative traits. Genet Res. 1999 Dec;74(3):279–289. doi: 10.1017/s0016672399004255. [DOI] [PubMed] [Google Scholar]
- Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]