Skip to main content
Genetics logoLink to Genetics
. 2002 Nov;162(3):1259–1274. doi: 10.1093/genetics/162.3.1259

Regulation of larval hematopoiesis in Drosophila melanogaster: a role for the multi sex combs gene.

Nathalie Remillieux-Leschelle 1, Pedro Santamaria 1, Neel B Randsholt 1
PMCID: PMC1462314  PMID: 12454071

Abstract

Drosophila larval hematopoietic organs produce circulating hemocytes that ensure the cellular host defense by recognizing and neutralizing non-self or noxious objects through phagocytosis or encapsulation and melanization. Hematopoietic lineage specification as well as blood cell proliferation and differentiation are tightly controlled. Mutations in genes that regulate lymph gland cell proliferation and hemocyte numbers in the body cavity cause hematopoietic organ overgrowth and hemocyte overproliferation. Occasionally, mutant hemocytes invade self-tissues, behaving like neoplastic malignant cells. Two alleles of the Polycomb group (PcG) gene multi sex combs (mxc) were previously isolated as such lethal malignant blood neoplasm mutations. PcG genes regulate Hox gene expression in vertebrates and invertebrates and participate in mammalian hematopoiesis control. Hence we investigated the need for mxc in Drosophila hematopoietic organs and circulating hemocytes. We show that mxc-induced hematopoietic hyperplasia is cell autonomous and that mxc mainly controls plasmatocyte lineage proliferation and differentiation in lymph glands and circulating hemocytes. Loss of the Toll pathway, which plays a similar role in hematopoiesis, counteracted mxc hemocyte proliferation but not mxc hemocyte differentiation. Several PcG genes tested in trans had no effects on mxc hematopoietic phenotypes, whereas the trithorax group gene brahma is important for normal and mutant hematopoiesis control. We propose that mxc provides one of the regulatory inputs in larval hematopoiesis that control normal rates of plasmatocyte and crystal lineage proliferation as well as normal rates and timing of hemocyte differentiation.

Full Text

The Full Text of this article is available as a PDF (320.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun A., Lemaitre B., Lanot R., Zachary D., Meister M. Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics. 1997 Oct;147(2):623–634. doi: 10.1093/genetics/147.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brock H. W., van Lohuizen M. The Polycomb group--no longer an exclusive club? Curr Opin Genet Dev. 2001 Apr;11(2):175–181. doi: 10.1016/s0959-437x(00)00176-3. [DOI] [PubMed] [Google Scholar]
  3. Chiba S. Homeobox genes in normal hematopoiesis and leukemogenesis. Int J Hematol. 1998 Dec;68(4):343–353. doi: 10.1016/s0925-5710(98)00093-0. [DOI] [PubMed] [Google Scholar]
  4. Crosby M. A., Miller C., Alon T., Watson K. L., Verrijzer C. P., Goldman-Levi R., Zak N. B. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Mol Cell Biol. 1999 Feb;19(2):1159–1170. doi: 10.1128/mcb.19.2.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dingwall A. K., Beek S. J., McCallum C. M., Tamkun J. W., Kalpana G. V., Goff S. P., Scott M. P. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol Biol Cell. 1995 Jul;6(7):777–791. doi: 10.1091/mbc.6.7.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elfring L. K., Daniel C., Papoulas O., Deuring R., Sarte M., Moseley S., Beek S. J., Waldrip W. R., Daubresse G., DePace A. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics. 1998 Jan;148(1):251–265. doi: 10.1093/genetics/148.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fossett N., Schulz R. A. Functional conservation of hematopoietic factors in Drosophila and vertebrates. Differentiation. 2001 Dec;69(2-3):83–90. doi: 10.1046/j.1432-0436.2001.690202.x. [DOI] [PubMed] [Google Scholar]
  8. Fossett N., Tevosian S. G., Gajewski K., Zhang Q., Orkin S. H., Schulz R. A. The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7342–7347. doi: 10.1073/pnas.131215798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gateff E., Mechler B. M. Tumor-suppressor genes of Drosophila melanogaster. Crit Rev Oncog. 1989;1(2):221–245. [PubMed] [Google Scholar]
  10. Gebuhr T. C., Bultman S. J., Magnuson T. Pc-G/trx-G and the SWI/SNF connection: developmental gene regulation through chromatin remodeling. Genesis. 2000 Mar;26(3):189–197. doi: 10.1002/(sici)1526-968x(200003)26:3<189::aid-gene4>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
  11. Govind S. Control of development and immunity by rel transcription factors in Drosophila. Oncogene. 1999 Nov 22;18(49):6875–6887. doi: 10.1038/sj.onc.1203223. [DOI] [PubMed] [Google Scholar]
  12. Grossmann M., Metcalf D., Merryfull J., Beg A., Baltimore D., Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11848–11853. doi: 10.1073/pnas.96.21.11848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hanratty W. P., Dearolf C. R. The Drosophila Tumorous-lethal hematopoietic oncogene is a dominant mutation in the hopscotch locus. Mol Gen Genet. 1993 Apr;238(1-2):33–37. doi: 10.1007/BF00279527. [DOI] [PubMed] [Google Scholar]
  14. Hanratty W. P., Ryerse J. S. A genetic melanotic neoplasm of Drosophila melanogaster. Dev Biol. 1981 Apr 30;83(2):238–249. doi: 10.1016/0012-1606(81)90470-x. [DOI] [PubMed] [Google Scholar]
  15. Harrison D. A., Binari R., Nahreini T. S., Gilman M., Perrimon N. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 1995 Jun 15;14(12):2857–2865. doi: 10.1002/j.1460-2075.1995.tb07285.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hou X. S., Melnick M. B., Perrimon N. Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell. 1996 Feb 9;84(3):411–419. doi: 10.1016/s0092-8674(00)81286-6. [DOI] [PubMed] [Google Scholar]
  17. Kennison J. A., Tamkun J. W. Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8136–8140. doi: 10.1073/pnas.85.21.8136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kwon E. J., Park H. S., Kim Y. S., Oh E. J., Nishida Y., Matsukage A., Yoo M. A., Yamaguchi M. Transcriptional regulation of the Drosophila raf proto-oncogene by Drosophila STAT during development and in immune response. J Biol Chem. 2000 Jun 30;275(26):19824–19830. doi: 10.1074/jbc.M001114200. [DOI] [PubMed] [Google Scholar]
  19. LaJeunesse D., Shearn A. E(z): a polycomb group gene or a trithorax group gene? Development. 1996 Jul;122(7):2189–2197. doi: 10.1242/dev.122.7.2189. [DOI] [PubMed] [Google Scholar]
  20. Lacronique V., Boureux A., Valle V. D., Poirel H., Quang C. T., Mauchauffé M., Berthou C., Lessard M., Berger R., Ghysdael J. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science. 1997 Nov 14;278(5341):1309–1312. doi: 10.1126/science.278.5341.1309. [DOI] [PubMed] [Google Scholar]
  21. Lagueux M., Perrodou E., Levashina E. A., Capovilla M., Hoffmann J. A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11427–11432. doi: 10.1073/pnas.97.21.11427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lanot R., Zachary D., Holder F., Meister M. Postembryonic hematopoiesis in Drosophila. Dev Biol. 2001 Feb 15;230(2):243–257. doi: 10.1006/dbio.2000.0123. [DOI] [PubMed] [Google Scholar]
  23. Lebestky T., Chang T., Hartenstein V., Banerjee U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science. 2000 Apr 7;288(5463):146–149. doi: 10.1126/science.288.5463.146. [DOI] [PubMed] [Google Scholar]
  24. Lessard J., Baban S., Sauvageau G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood. 1998 Feb 15;91(4):1216–1224. [PubMed] [Google Scholar]
  25. Lessard J., Schumacher A., Thorsteinsdottir U., van Lohuizen M., Magnuson T., Sauvageau G. Functional antagonism of the Polycomb-Group genes eed and Bmi1 in hemopoietic cell proliferation. Genes Dev. 1999 Oct 15;13(20):2691–2703. doi: 10.1101/gad.13.20.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luo H., Dearolf C. R. The JAK/STAT pathway and Drosophila development. Bioessays. 2001 Dec;23(12):1138–1147. doi: 10.1002/bies.10016. [DOI] [PubMed] [Google Scholar]
  27. Luo H., Hanratty W. P., Dearolf C. R. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 1995 Apr 3;14(7):1412–1420. doi: 10.1002/j.1460-2075.1995.tb07127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Luo H., Rose P. E., Roberts T. M., Dearolf C. R. The Hopscotch Jak kinase requires the Raf pathway to promote blood cell activation and differentiation in Drosophila. Mol Genet Genomics. 2002 Feb 1;267(1):57–63. doi: 10.1007/s00438-001-0632-7. [DOI] [PubMed] [Google Scholar]
  29. Luo H., Rose P., Barber D., Hanratty W. P., Lee S., Roberts T. M., D'Andrea A. D., Dearolf C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol Cell Biol. 1997 Mar;17(3):1562–1571. doi: 10.1128/mcb.17.3.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Magli M. C., Largman C., Lawrence H. J. Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol. 1997 Nov;173(2):168–177. doi: 10.1002/(SICI)1097-4652(199711)173:2<168::AID-JCP16>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
  31. Mathey-Prevot B., Perrimon N. Mammalian and Drosophila blood: JAK of all trades? Cell. 1998 Mar 20;92(6):697–700. doi: 10.1016/s0092-8674(00)81396-3. [DOI] [PubMed] [Google Scholar]
  32. Nosaka T., Kawashima T., Misawa K., Ikuta K., Mui A. L., Kitamura T. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 1999 Sep 1;18(17):4754–4765. doi: 10.1093/emboj/18.17.4754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pirrotta V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell. 1998 May 1;93(3):333–336. doi: 10.1016/s0092-8674(00)81162-9. [DOI] [PubMed] [Google Scholar]
  34. Qiu P., Pan P. C., Govind S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development. 1998 May;125(10):1909–1920. doi: 10.1242/dev.125.10.1909. [DOI] [PubMed] [Google Scholar]
  35. Ruhf M. L., Braun A., Papoulas O., Tamkun J. W., Randsholt N., Meister M. The domino gene of Drosophila encodes novel members of the SWI2/SNF2 family of DNA-dependent ATPases, which contribute to the silencing of homeotic genes. Development. 2001 Apr;128(8):1429–1441. doi: 10.1242/dev.128.8.1429. [DOI] [PubMed] [Google Scholar]
  36. Saget O., Forquignon F., Santamaria P., Randsholt N. B. Needs and targets for the multi sex combs gene product in Drosophila melanogaster. Genetics. 1998 Aug;149(4):1823–1838. doi: 10.1093/genetics/149.4.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simon Jeffrey A., Tamkun John W. Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev. 2002 Apr;12(2):210–218. doi: 10.1016/s0959-437x(02)00288-5. [DOI] [PubMed] [Google Scholar]
  38. Sorrentino Richard Paul, Carton Yves, Govind Shubha. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev Biol. 2002 Mar 1;243(1):65–80. doi: 10.1006/dbio.2001.0542. [DOI] [PubMed] [Google Scholar]
  39. Takihara Y., Hara J. Polycomb-group genes and hematopoiesis. Int J Hematol. 2000 Aug;72(2):165–172. [PubMed] [Google Scholar]
  40. Tamkun J. W., Deuring R., Scott M. P., Kissinger M., Pattatucci A. M., Kaufman T. C., Kennison J. A. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell. 1992 Feb 7;68(3):561–572. doi: 10.1016/0092-8674(92)90191-e. [DOI] [PubMed] [Google Scholar]
  41. Török T., Harvie P. D., Buratovich M., Bryant P. J. The product of proliferation disrupter is concentrated at centromeres and required for mitotic chromosome condensation and cell proliferation in Drosophila. Genes Dev. 1997 Jan 15;11(2):213–225. doi: 10.1101/gad.11.2.213. [DOI] [PubMed] [Google Scholar]
  42. Török T., Tick G., Alvarado M., Kiss I. P-lacW insertional mutagenesis on the second chromosome of Drosophila melanogaster: isolation of lethals with different overgrowth phenotypes. Genetics. 1993 Sep;135(1):71–80. doi: 10.1093/genetics/135.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vignali M., Hassan A. H., Neely K. E., Workman J. L. ATP-dependent chromatin-remodeling complexes. Mol Cell Biol. 2000 Mar;20(6):1899–1910. doi: 10.1128/mcb.20.6.1899-1910.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Watson K. L., Johnson T. K., Denell R. E. Lethal(1) aberrant immune response mutations leading to melanotic tumor formation in Drosophila melanogaster. Dev Genet. 1991;12(3):173–187. doi: 10.1002/dvg.1020120302. [DOI] [PubMed] [Google Scholar]
  45. White K., Grether M. E., Abrams J. M., Young L., Farrell K., Steller H. Genetic control of programmed cell death in Drosophila. Science. 1994 Apr 29;264(5159):677–683. doi: 10.1126/science.8171319. [DOI] [PubMed] [Google Scholar]
  46. Woodhouse E., Hersperger E., Shearn A. Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Dev Genes Evol. 1998 Feb;207(8):542–550. doi: 10.1007/s004270050145. [DOI] [PubMed] [Google Scholar]
  47. Yan R., Small S., Desplan C., Dearolf C. R., Darnell J. E., Jr Identification of a Stat gene that functions in Drosophila development. Cell. 1996 Feb 9;84(3):421–430. doi: 10.1016/s0092-8674(00)81287-8. [DOI] [PubMed] [Google Scholar]
  48. Yu B. D., Hess J. L., Horning S. E., Brown G. A., Korsmeyer S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995 Nov 30;378(6556):505–508. doi: 10.1038/378505a0. [DOI] [PubMed] [Google Scholar]
  49. van Lohuizen M. The trithorax-group and polycomb-group chromatin modifiers: implications for disease. Curr Opin Genet Dev. 1999 Jun;9(3):355–361. doi: 10.1016/s0959-437x(99)80053-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES