Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Nov 1;24(21):4273–4280. doi: 10.1093/nar/24.21.4273

Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.

T Ihara 1, Y Maruo 1, S Takenaka 1, M Takagi 1
PMCID: PMC146233  PMID: 8932383

Abstract

Toward the development of a universal, sensitive and convenient method of DNA (or RNA) detection, electrochemically active oligonucleotides were prepared by covalent linkage of a ferrocenyl group to the 5'-aminohexyl-terminated synthetic oligonucleotides. Using these electrochemically active probes, we have been able to demonstrate the detection of DNA and RNA at femtomole levels by HPLC equipped with an ordinary electrochemical detector (ECD) [Takenaka,S., Uto,Y., Kondo,H., Ihara,T. and Takagi,M. (1994) Anal. Biochem., 218, 436-443]. Thermodynamic and electrochemical studies of the interaction between the probes and the targets are presented here. The thermodynamics obtained revealed that the conjugation stabilizes the triple-helix complexes by 2-3 kcal mol-1 (1-2 orders increment in binding constant) at 298 K, which corresponds to the effect of elongation of additional several base triplets. The main cause of this thermodynamic stabilization by the conjugation is likely to be the overall conformational change of whole structure of the conjugate rather than the additional local interaction. The redox potential of the probe was independent of the target structure, which is either single- or double stranded. However, the potential is slightly dependent (with a 10-30 mV negative shift on complexation) on the extra sequence in the target, probably because the individual sequence is capable of contacting or interacting with the ferrocenyl group in a slightly different way from each other. This small potential shift itself, however, does not cause any inconvenience on practical applications in detecting the probes by using ECD. These results lead to the conclusion that the redox-active probes are very useful for the microanalysis of nucleic acids due to the stability of the complexes, high detection sensitivity and wide applicability to the target structures (DNA and RNA; single- and double strands) and the sequences.

Full Text

The Full Text of this article is available as a PDF (140.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck S., Köster H. Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem. 1990 Nov 1;62(21):2258–2270. doi: 10.1021/ac00220a003. [DOI] [PubMed] [Google Scholar]
  2. Culliton B. J. Gene therapy begins. Science. 1990 Sep 21;249(4975):1372–1372. [PubMed] [Google Scholar]
  3. Dranoff G., Jaffee E., Lazenby A., Golumbek P., Levitsky H., Brose K., Jackson V., Hamada H., Pardoll D., Mulligan R. C. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3539–3543. doi: 10.1073/pnas.90.8.3539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fenn R. J., Siggia S., Curran D. J. Liquid chromatography detector based on single and twin electrode thin-layer electrochemistry: application to the determination of catecholamines in blood plasma. Anal Chem. 1978 Jul;50(8):1067–1073. doi: 10.1021/ac50030a017. [DOI] [PubMed] [Google Scholar]
  5. Kafil J. B., Cheng H. Y., Last T. A. Quantitation of nucleic acids at the picogram level using high-performance liquid chromatography with electrochemical detection. Anal Chem. 1986 Feb;58(2):285–289. doi: 10.1021/ac00293a005. [DOI] [PubMed] [Google Scholar]
  6. Manzini G., Xodo L. E., Gasparotto D., Quadrifoglio F., van der Marel G. A., van Boom J. H. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J Mol Biol. 1990 Jun 20;213(4):833–843. doi: 10.1016/S0022-2836(05)80267-0. [DOI] [PubMed] [Google Scholar]
  7. Mergny J. L., Collier D., Rougée M., Montenay-Garestier T., Hélène C. Intercalation of ethidium bromide into a triple-stranded oligonucleotide. Nucleic Acids Res. 1991 Apr 11;19(7):1521–1526. doi: 10.1093/nar/19.7.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mergny J. L., Sun J. S., Rougée M., Montenay-Garestier T., Barcelo F., Chomilier J., Hélène C. Sequence specificity in triple-helix formation: experimental and theoretical studies of the effect of mismatches on triplex stability. Biochemistry. 1991 Oct 8;30(40):9791–9798. doi: 10.1021/bi00104a031. [DOI] [PubMed] [Google Scholar]
  9. Murrell J., Farlow M., Ghetti B., Benson M. D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science. 1991 Oct 4;254(5028):97–99. doi: 10.1126/science.1925564. [DOI] [PubMed] [Google Scholar]
  10. Nakahara T., Shiraishi A., Hirano M., Matsumoto T., Kuroki T., Tatebayashi Y., Tsutsumi T., Nishiyama K., Ooboshi H., Nakamura K. Determination of guanine by high-performance liquid chromatography with electrochemical detection: application to DNA and RNA assays. Anal Biochem. 1989 Jul;180(1):38–42. [PubMed] [Google Scholar]
  11. Nakano R., Sato S., Inuzuka T., Sakimura K., Mishina M., Takahashi H., Ikuta F., Honma Y., Fujii J., Taniguchi N. A novel mutation in Cu/Zn superoxide dismutase gene in Japanese familial amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 1994 Apr 29;200(2):695–703. doi: 10.1006/bbrc.1994.1506. [DOI] [PubMed] [Google Scholar]
  12. Petersheim M., Turner D. H. Base-stacking and base-pairing contributions to helix stability: thermodynamics of double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp, CCGGUp, and ACCGGUp. Biochemistry. 1983 Jan 18;22(2):256–263. doi: 10.1021/bi00271a004. [DOI] [PubMed] [Google Scholar]
  13. Pilch D. S., Brousseau R., Shafer R. H. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices. Nucleic Acids Res. 1990 Oct 11;18(19):5743–5750. doi: 10.1093/nar/18.19.5743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pilch D. S., Levenson C., Shafer R. H. Structural analysis of the (dA)10.2(dT)10 triple helix. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1942–1946. doi: 10.1073/pnas.87.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Plum G. E., Park Y. W., Singleton S. F., Dervan P. B., Breslauer K. J. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9436–9440. doi: 10.1073/pnas.87.23.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rich D. P., Couture L. A., Cardoza L. M., Guiggio V. M., Armentano D., Espino P. C., Hehir K., Welsh M. J., Smith A. E., Gregory R. J. Development and analysis of recombinant adenoviruses for gene therapy of cystic fibrosis. Hum Gene Ther. 1993 Aug;4(4):461–476. doi: 10.1089/hum.1993.4.4-461. [DOI] [PubMed] [Google Scholar]
  17. Riley M., Maling B. Physical and chemical characterization of two- and three-stranded adenine-thymine and adenine-uracil homopolymer complexes. J Mol Biol. 1966 Sep;20(2):359–389. doi: 10.1016/0022-2836(66)90069-6. [DOI] [PubMed] [Google Scholar]
  18. Roberts R. W., Crothers D. M. Specificity and stringency in DNA triplex formation. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9397–9401. doi: 10.1073/pnas.88.21.9397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rougée M., Faucon B., Mergny J. L., Barcelo F., Giovannangeli C., Garestier T., Hélène C. Kinetics and thermodynamics of triple-helix formation: effects of ionic strength and mismatches. Biochemistry. 1992 Sep 29;31(38):9269–9278. doi: 10.1021/bi00153a021. [DOI] [PubMed] [Google Scholar]
  20. Singleton S. F., Dervan P. B. Equilibrium association constants for oligonucleotide-directed triple helix formation at single DNA sites: linkage to cation valence and concentration. Biochemistry. 1993 Dec 7;32(48):13171–13179. doi: 10.1021/bi00211a028. [DOI] [PubMed] [Google Scholar]
  21. Singleton S. F., Dervan P. B. Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry. 1992 Nov 17;31(45):10995–11003. doi: 10.1021/bi00160a008. [DOI] [PubMed] [Google Scholar]
  22. Takenaka S., Uto Y., Kondo H., Ihara T., Takagi M. Electrochemically active DNA probes: detection of target DNA sequences at femtomole level by high-performance liquid chromatography with electrochemical detection. Anal Biochem. 1994 May 1;218(2):436–443. doi: 10.1006/abio.1994.1203. [DOI] [PubMed] [Google Scholar]
  23. Wiseman T., Williston S., Brandts J. F., Lin L. N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 1989 May 15;179(1):131–137. doi: 10.1016/0003-2697(89)90213-3. [DOI] [PubMed] [Google Scholar]
  24. Yoon K., Hobbs C. A., Walter A. E., Turner D. H. Effect of a 5'-phosphate on the stability of triple helix. Nucleic Acids Res. 1993 Feb 11;21(3):601–606. doi: 10.1093/nar/21.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES