Abstract
Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis.
Full Text
The Full Text of this article is available as a PDF (102.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes T. M., Kohara Y., Coulson A., Hekimi S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics. 1995 Sep;141(1):159–179. doi: 10.1093/genetics/141.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broman Karl W., Rowe Lucy B., Churchill Gary A., Paigen Ken. Crossover interference in the mouse. Genetics. 2002 Mar;160(3):1123–1131. doi: 10.1093/genetics/160.3.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broverman S. A., Meneely P. M. Meiotic mutants that cause a polar decrease in recombination on the X chromosome in Caenorhabditis elegans. Genetics. 1994 Jan;136(1):119–127. doi: 10.1093/genetics/136.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dernburg A. F. Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol. 2001 Jun 11;153(6):F33–F38. doi: 10.1083/jcb.153.6.f33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998 Aug 7;94(3):387–398. doi: 10.1016/s0092-8674(00)81481-6. [DOI] [PubMed] [Google Scholar]
- Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
- Haack H., Hodgkin J. Tests for parental imprinting in the nematode Caenorhabditis elegans. Mol Gen Genet. 1991 Sep;228(3):482–485. doi: 10.1007/BF00260643. [DOI] [PubMed] [Google Scholar]
- Hassold T., Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001 Apr;2(4):280–291. doi: 10.1038/35066065. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Irick H., Zitron A. E., Haddox D. A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet. 1992;13(6):440–467. doi: 10.1002/dvg.1020130608. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., McKim K. S., Arbel T. Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths. Annu Rev Genet. 1993;27:281–317. doi: 10.1146/annurev.ge.27.120193.001433. [DOI] [PubMed] [Google Scholar]
- Hawley R. S., Theurkauf W. E. Requiem for distributive segregation: achiasmate segregation in Drosophila females. Trends Genet. 1993 Sep;9(9):310–317. doi: 10.1016/0168-9525(93)90249-h. [DOI] [PubMed] [Google Scholar]
- Herman R. K., Kari C. K. Recombination between small X chromosome duplications and the X chromosome in Caenorhabditis elegans. Genetics. 1989 Apr;121(4):723–737. doi: 10.1093/genetics/121.4.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyting C. Synaptonemal complexes: structure and function. Curr Opin Cell Biol. 1996 Jun;8(3):389–396. doi: 10.1016/s0955-0674(96)80015-9. [DOI] [PubMed] [Google Scholar]
- Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim J. S., Rose A. M. The effect of gamma radiation on recombination frequency in Caenorhabditis elegans. Genome. 1987 Jun;29(3):457–462. doi: 10.1139/g87-079. [DOI] [PubMed] [Google Scholar]
- Kleckner N. Meiosis: how could it work? Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8167–8174. doi: 10.1073/pnas.93.16.8167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koehler K. E., Boulton C. L., Collins H. E., French R. L., Herman K. C., Lacefield S. M., Madden L. D., Schuetz C. D., Hawley R. S. Spontaneous X chromosome MI and MII nondisjunction events in Drosophila melanogaster oocytes have different recombinational histories. Nat Genet. 1996 Dec;14(4):406–414. doi: 10.1038/ng1296-406. [DOI] [PubMed] [Google Scholar]
- Lamb N. E., Freeman S. B., Savage-Austin A., Pettay D., Taft L., Hersey J., Gu Y., Shen J., Saker D., May K. M. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet. 1996 Dec;14(4):400–405. doi: 10.1038/ng1296-400. [DOI] [PubMed] [Google Scholar]
- McKim K. S., Peters K., Rose A. M. Two types of sites required for meiotic chromosome pairing in Caenorhabditis elegans. Genetics. 1993 Jul;134(3):749–768. doi: 10.1093/genetics/134.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicklas R. B. How cells get the right chromosomes. Science. 1997 Jan 31;275(5300):632–637. doi: 10.1126/science.275.5300.632. [DOI] [PubMed] [Google Scholar]
- Singer Amy, Perlman Hodel, Yan YiLin, Walker Charlene, Corley-Smith Graham, Brandhorst Bruce, Postlethwait John. Sex-specific recombination rates in zebrafish (Danio rerio). Genetics. 2002 Feb;160(2):649–657. doi: 10.1093/genetics/160.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sym M., Roeder G. S. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell. 1994 Oct 21;79(2):283–292. doi: 10.1016/0092-8674(94)90197-x. [DOI] [PubMed] [Google Scholar]
- Villeneuve A. M. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics. 1994 Mar;136(3):887–902. doi: 10.1093/genetics/136.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicky C., Rose A. M. The role of chromosome ends during meiosis in Caenorhabditis elegans. Bioessays. 1996 Jun;18(6):447–452. doi: 10.1002/bies.950180606. [DOI] [PubMed] [Google Scholar]
- Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
- Yu A., Zhao C., Fan Y., Jang W., Mungall A. J., Deloukas P., Olsen A., Doggett N. A., Ghebranious N., Broman K. W. Comparison of human genetic and sequence-based physical maps. Nature. 2001 Feb 15;409(6822):951–953. doi: 10.1038/35057185. [DOI] [PubMed] [Google Scholar]
- Zalevsky J., MacQueen A. J., Duffy J. B., Kemphues K. J., Villeneuve A. M. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics. 1999 Nov;153(3):1271–1283. doi: 10.1093/genetics/153.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zetka M. C., Rose A. M. Mutant rec-1 eliminates the meiotic pattern of crossing over in Caenorhabditis elegans. Genetics. 1995 Dec;141(4):1339–1349. doi: 10.1093/genetics/141.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zetka M. C., Rose A. M. Sex-related differences in crossing over in Caenorhabditis elegans. Genetics. 1990 Oct;126(2):355–363. doi: 10.1093/genetics/126.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zickler D., Kleckner N. The leptotene-zygotene transition of meiosis. Annu Rev Genet. 1998;32:619–697. doi: 10.1146/annurev.genet.32.1.619. [DOI] [PubMed] [Google Scholar]