Skip to main content
Genetics logoLink to Genetics
. 2002 Nov;162(3):1003–1018. doi: 10.1093/genetics/162.3.1003

Dissecting the fidelity of bacteriophage RB69 DNA polymerase: site-specific modulation of fidelity by polymerase accessory proteins.

Anna Bebenek 1, Geraldine T Carver 1, Holly Kloos Dressman 1, Farid A Kadyrov 1, Joseph K Haseman 1, Vasiliy Petrov 1, William H Konigsberg 1, Jim D Karam 1, John W Drake 1
PMCID: PMC1462346  PMID: 12454051

Abstract

Bacteriophage RB69 encodes a replicative B-family DNA polymerase (RB69 gp43) with an associated proofreading 3' exonuclease. Crystal structures have been determined for this enzyme with and without DNA substrates. We previously described the mutation rates and kinds of mutations produced in vivo by the wild-type (Pol(+) Exo(+)) enzyme, an exonuclease-deficient mutator variant (Pol(+) Exo(-)), mutator variants with substitutions at Tyr(567) in the polymerase active site (Pol(M) Exo(+)), and the double mutator Pol(M) Exo(-). Comparing the mutational spectra of the Pol(+) Exo(-) and Pol(+) Exo(+) enzymes revealed the patterns and efficiencies of proofreading, while Tyr(567) was identified as an important determinant of base-selection fidelity. Here, we sought to determine how well the fidelities of the same enzymes are reflected in vitro. Compared to their behavior in vivo, the three mutator polymerases exhibited modestly higher mutation rates in vitro and their mutational predilections were also somewhat different. Although the RB69 gp43 accessory proteins exerted little or no effect on total mutation rates in vitro, they strongly affected mutation rates at many specific sites, increasing some rates and decreasing others.

Full Text

The Full Text of this article is available as a PDF (189.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdus Sattar A. K., Lin T. C., Jones C., Konigsberg W. H. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase. Biochemistry. 1996 Dec 24;35(51):16621–16629. doi: 10.1021/bi961552q. [DOI] [PubMed] [Google Scholar]
  2. Bebenek A., Dressman H. K., Carver G. T., Ng S., Petrov V., Yang G., Konigsberg W. H., Karam J. D., Drake J. W. Interacting fidelity defects in the replicative DNA polymerase of bacteriophage RB69. J Biol Chem. 2000 Dec 22;276(13):10387–10397. doi: 10.1074/jbc.M007707200. [DOI] [PubMed] [Google Scholar]
  3. Bebenek K., Joyce C. M., Fitzgerald M. P., Kunkel T. A. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem. 1990 Aug 15;265(23):13878–13887. [PubMed] [Google Scholar]
  4. Bebenek K., Kunkel T. A. Analyzing fidelity of DNA polymerases. Methods Enzymol. 1995;262:217–232. doi: 10.1016/0076-6879(95)62020-6. [DOI] [PubMed] [Google Scholar]
  5. Bebenek K., Kunkel T. A. Streisinger revisited: DNA synthesis errors mediated by substrate misalignments. Cold Spring Harb Symp Quant Biol. 2000;65:81–91. doi: 10.1101/sqb.2000.65.81. [DOI] [PubMed] [Google Scholar]
  6. Boosalis M. S., Mosbaugh D. W., Hamatake R., Sugino A., Kunkel T. A., Goodman M. F. Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J Biol Chem. 1989 Jul 5;264(19):11360–11366. [PubMed] [Google Scholar]
  7. Braithwaite D. K., Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993 Feb 25;21(4):787–802. doi: 10.1093/nar/21.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clayton L. K., Goodman M. F., Branscomb E. W., Galas D. J. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J Biol Chem. 1979 Mar 25;254(6):1902–1912. [PubMed] [Google Scholar]
  9. Doublié S., Tabor S., Long A. M., Richardson C. C., Ellenberger T. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature. 1998 Jan 15;391(6664):251–258. doi: 10.1038/34593. [DOI] [PubMed] [Google Scholar]
  10. Drake J. W. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160–7164. doi: 10.1073/pnas.88.16.7160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Efrati E., Tocco G., Eritja R., Wilson S. H., Goodman M. F. Abasic translesion synthesis by DNA polymerase beta violates the "A-rule". Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J Biol Chem. 1997 Jan 24;272(4):2559–2569. doi: 10.1074/jbc.272.4.2559. [DOI] [PubMed] [Google Scholar]
  12. Fersht A. R. Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4946–4950. doi: 10.1073/pnas.76.10.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujii S., Akiyama M., Aoki K., Sugaya Y., Higuchi K., Hiraoka M., Miki Y., Saitoh N., Yoshiyama K., Ihara K. DNA replication errors produced by the replicative apparatus of Escherichia coli. J Mol Biol. 1999 Jun 18;289(4):835–850. doi: 10.1006/jmbi.1999.2802. [DOI] [PubMed] [Google Scholar]
  14. Glickman B. W., Ripley L. S. Structural intermediates of deletion mutagenesis: a role for palindromic DNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):512–516. doi: 10.1073/pnas.81.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goodman M. F. Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10493–10495. doi: 10.1073/pnas.94.20.10493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hashim M. F., Schnetz-Boutaud N., Marnett L. J. Replication of template-primers containing propanodeoxyguanosine by DNA polymerase beta. Induction of base pair substitution and frameshift mutations by template slippage and deoxynucleoside triphosphate stabilization. J Biol Chem. 1997 Aug 8;272(32):20205–20212. doi: 10.1074/jbc.272.32.20205. [DOI] [PubMed] [Google Scholar]
  17. Hopfner K. P., Eichinger A., Engh R. A., Laue F., Ankenbauer W., Huber R., Angerer B. Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3600–3605. doi: 10.1073/pnas.96.7.3600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson A. A., Johnson K. A. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J Biol Chem. 2001 Jul 26;276(41):38090–38096. doi: 10.1074/jbc.M106045200. [DOI] [PubMed] [Google Scholar]
  19. Johnson K. A. Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem. 1993;62:685–713. doi: 10.1146/annurev.bi.62.070193.003345. [DOI] [PubMed] [Google Scholar]
  20. Kadyrov F. A., Drake J. W. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks. J Biol Chem. 2001 Jun 4;276(31):29559–29566. doi: 10.1074/jbc.M101310200. [DOI] [PubMed] [Google Scholar]
  21. Karam J. D., Konigsberg W. H. DNA polymerase of the T4-related bacteriophages. Prog Nucleic Acid Res Mol Biol. 2000;64:65–96. doi: 10.1016/s0079-6603(00)64002-3. [DOI] [PubMed] [Google Scholar]
  22. Kroutil L. C., Frey M. W., Kaboord B. F., Kunkel T. A., Benkovic S. J. Effect of accessory proteins on T4 DNA polymerase replication fidelity. J Mol Biol. 1998 Apr 24;278(1):135–146. doi: 10.1006/jmbi.1998.1676. [DOI] [PubMed] [Google Scholar]
  23. Kunkel T. A., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497–529. doi: 10.1146/annurev.biochem.69.1.497. [DOI] [PubMed] [Google Scholar]
  24. Kunkel T. A. Frameshift mutagenesis by eucaryotic DNA polymerases in vitro. J Biol Chem. 1986 Oct 15;261(29):13581–13587. [PubMed] [Google Scholar]
  25. Kunkel T. A., Schaaper R. M., Beckman R. A., Loeb L. A. On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J Biol Chem. 1981 Oct 10;256(19):9883–9889. [PubMed] [Google Scholar]
  26. Kunkel T. A., Soni A. Mutagenesis by transient misalignment. J Biol Chem. 1988 Oct 15;263(29):14784–14789. [PubMed] [Google Scholar]
  27. Kunkel T. A. The mutational specificity of DNA polymerase-beta during in vitro DNA synthesis. Production of frameshift, base substitution, and deletion mutations. J Biol Chem. 1985 May 10;260(9):5787–5796. [PubMed] [Google Scholar]
  28. Ling H., Boudsocq F., Woodgate R., Yang W. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell. 2001 Oct 5;107(1):91–102. doi: 10.1016/s0092-8674(01)00515-3. [DOI] [PubMed] [Google Scholar]
  29. Longley M. J., Nguyen D., Kunkel T. A., Copeland W. C. The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem. 2001 Aug 14;276(42):38555–38562. doi: 10.1074/jbc.M105230200. [DOI] [PubMed] [Google Scholar]
  30. Mathews C. K., Sinha N. K. Are DNA precursors concentrated at replication sites? Proc Natl Acad Sci U S A. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Morales J. C., Kool E. T. Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases. Biochemistry. 2000 Oct 24;39(42):12979–12988. doi: 10.1021/bi001578o. [DOI] [PubMed] [Google Scholar]
  32. Moran S., Ren R. X., Kool E. T. A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10506–10511. doi: 10.1073/pnas.94.20.10506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mozzherin D. J., McConnell M., Jasko M. V., Krayevsky A. A., Tan C. K., Downey K. M., Fisher P. A. Proliferating cell nuclear antigen promotes misincorporation catalyzed by calf thymus DNA polymerase delta. J Biol Chem. 1996 Dec 6;271(49):31711–31717. doi: 10.1074/jbc.271.49.31711. [DOI] [PubMed] [Google Scholar]
  34. Pham P. T., Olson M. W., McHenry C. S., Schaaper R. M. The base substitution and frameshift fidelity of Escherichia coli DNA polymerase III holoenzyme in vitro. J Biol Chem. 1998 Sep 4;273(36):23575–23584. doi: 10.1074/jbc.273.36.23575. [DOI] [PubMed] [Google Scholar]
  35. Piegorsch W. W., Bailer A. J. Statistical approaches for analyzing mutational spectra: some recommendations for categorical data. Genetics. 1994 Jan;136(1):403–416. doi: 10.1093/genetics/136.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rodriguez A. C., Park H. W., Mao C., Beese L. S. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol. 2000 Jun 2;299(2):447–462. doi: 10.1006/jmbi.2000.3728. [DOI] [PubMed] [Google Scholar]
  37. Schaaper R. M., Dunn R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6220–6224. doi: 10.1073/pnas.84.17.6220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shamoo Y., Steitz T. A. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell. 1999 Oct 15;99(2):155–166. doi: 10.1016/s0092-8674(00)81647-5. [DOI] [PubMed] [Google Scholar]
  39. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  40. Topal M. D., Sinha N. K. Products of bacteriophage T4 genes 32 and 45 improve the accuracy of DNA replication in vitro. J Biol Chem. 1983 Oct 25;258(20):12274–12279. [PubMed] [Google Scholar]
  41. Wang C. C., Yeh L. S., Karam J. D. Modular organization of T4 DNA polymerase. Evidence from phylogenetics. J Biol Chem. 1995 Nov 3;270(44):26558–26564. doi: 10.1074/jbc.270.44.26558. [DOI] [PubMed] [Google Scholar]
  42. Wang J., Sattar A. K., Wang C. C., Karam J. D., Konigsberg W. H., Steitz T. A. Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell. 1997 Jun 27;89(7):1087–1099. doi: 10.1016/s0092-8674(00)80296-2. [DOI] [PubMed] [Google Scholar]
  43. Wang Zhijie, Lazarov Eli, O'Donnell Mike, Goodman Myron F. Resolving a fidelity paradox: why Escherichia coli DNA polymerase II makes more base substitution errors in AT- compared with GC-rich DNA. J Biol Chem. 2001 Dec 3;277(6):4446–4454. doi: 10.1074/jbc.M110006200. [DOI] [PubMed] [Google Scholar]
  44. Yeh L. S., Hsu T., Karam J. D. Divergence of a DNA replication gene cluster in the T4-related bacteriophage RB69. J Bacteriol. 1998 Apr;180(8):2005–2013. doi: 10.1128/jb.180.8.2005-2013.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yeh L. S., Hsu T., Karam J. D. Divergence of a DNA replication gene cluster in the T4-related bacteriophage RB69. J Bacteriol. 1998 Apr;180(8):2005–2013. doi: 10.1128/jb.180.8.2005-2013.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Young M. C., Reddy M. K., von Hippel P. H. Structure and function of the bacteriophage T4 DNA polymerase holoenzyme. Biochemistry. 1992 Sep 22;31(37):8675–8690. doi: 10.1021/bi00152a001. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES