Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):2025–2035. doi: 10.1093/genetics/162.4.2025

Approximate Bayesian computation in population genetics.

Mark A Beaumont 1, Wenyang Zhang 1, David J Balding 1
PMCID: PMC1462356  PMID: 12524368

Abstract

We propose a new method for approximate Bayesian statistical inference on the basis of summary statistics. The method is suited to complex problems that arise in population genetics, extending ideas developed in this setting by earlier authors. Properties of the posterior distribution of a parameter, such as its mean or density curve, are approximated without explicit likelihood calculations. This is achieved by fitting a local-linear regression of simulated parameter values on simulated summary statistics, and then substituting the observed summary statistics into the regression equation. The method combines many of the advantages of Bayesian statistical inference with the computational efficiency of methods based on summary statistics. A key advantage of the method is that the nuisance parameters are automatically integrated out in the simulation step, so that the large numbers of nuisance parameters that arise in population genetics problems can be handled without difficulty. Simulation results indicate computational and statistical efficiency that compares favorably with those of alternative methods previously proposed in the literature. We also compare the relative efficiency of inferences obtained using methods based on summary statistics with those obtained directly from the data using MCMC.

Full Text

The Full Text of this article is available as a PDF (174.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ci S. X., Huynh T. H., Louie L. W., Yang A., Beals B. J., Ron N., Tsang W. G., Soon-Shiong P., Desai N. P. Molecular mass distribution of sodium alginate by high-performance size-exclusion chromatography. J Chromatogr A. 1999 Dec 24;864(2):199–210. doi: 10.1016/s0021-9673(99)01029-8. [DOI] [PubMed] [Google Scholar]
  2. Di Rienzo A., Donnelly P., Toomajian C., Sisk B., Hill A., Petzl-Erler M. L., Haines G. K., Barch D. H. Heterogeneity of microsatellite mutations within and between loci, and implications for human demographic histories. Genetics. 1998 Mar;148(3):1269–1284. doi: 10.1093/genetics/148.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Estoup A., Wilson I. J., Sullivan C., Cornuet J. M., Moritz C. Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics. 2001 Dec;159(4):1671–1687. doi: 10.1093/genetics/159.4.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fu Y. X., Li W. H. Estimating the age of the common ancestor of a sample of DNA sequences. Mol Biol Evol. 1997 Feb;14(2):195–199. doi: 10.1093/oxfordjournals.molbev.a025753. [DOI] [PubMed] [Google Scholar]
  5. King J. P., Kimmel M., Chakraborty R. A power analysis of microsatellite-based statistics for inferring past population growth. Mol Biol Evol. 2000 Dec;17(12):1859–1868. doi: 10.1093/oxfordjournals.molbev.a026287. [DOI] [PubMed] [Google Scholar]
  6. Ohta T., Kimura M. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res. 1973 Oct;22(2):201–204. doi: 10.1017/s0016672300012994. [DOI] [PubMed] [Google Scholar]
  7. Pritchard J. K., Seielstad M. T., Perez-Lezaun A., Feldman M. W. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. Mol Biol Evol. 1999 Dec;16(12):1791–1798. doi: 10.1093/oxfordjournals.molbev.a026091. [DOI] [PubMed] [Google Scholar]
  8. Pérez-Lezaun A., Calafell F., Seielstad M., Mateu E., Comas D., Bosch E., Bertranpetit J. Population genetics of Y-chromosome short tandem repeats in humans. J Mol Evol. 1997 Sep;45(3):265–270. doi: 10.1007/pl00006229. [DOI] [PubMed] [Google Scholar]
  9. Seielstad M. T., Minch E., Cavalli-Sforza L. L. Genetic evidence for a higher female migration rate in humans. Nat Genet. 1998 Nov;20(3):278–280. doi: 10.1038/3088. [DOI] [PubMed] [Google Scholar]
  10. Shoemaker J. S., Painter I. S., Weir B. S. Bayesian statistics in genetics: a guide for the uninitiated. Trends Genet. 1999 Sep;15(9):354–358. doi: 10.1016/s0168-9525(99)01751-5. [DOI] [PubMed] [Google Scholar]
  11. Slatkin M. Linkage disequilibrium in growing and stable populations. Genetics. 1994 May;137(1):331–336. doi: 10.1093/genetics/137.1.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tavaré S., Balding D. J., Griffiths R. C., Donnelly P. Inferring coalescence times from DNA sequence data. Genetics. 1997 Feb;145(2):505–518. doi: 10.1093/genetics/145.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tishkoff S. A., Varkonyi R., Cahinhinan N., Abbes S., Argyropoulos G., Destro-Bisol G., Drousiotou A., Dangerfield B., Lefranc G., Loiselet J. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science. 2001 Jun 21;293(5529):455–462. doi: 10.1126/science.1061573. [DOI] [PubMed] [Google Scholar]
  14. Wall J. D. A comparison of estimators of the population recombination rate. Mol Biol Evol. 2000 Jan;17(1):156–163. doi: 10.1093/oxfordjournals.molbev.a026228. [DOI] [PubMed] [Google Scholar]
  15. Weiss G., von Haeseler A. Inference of population history using a likelihood approach. Genetics. 1998 Jul;149(3):1539–1546. doi: 10.1093/genetics/149.3.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wilson I. J., Balding D. J. Genealogical inference from microsatellite data. Genetics. 1998 Sep;150(1):499–510. doi: 10.1093/genetics/150.1.499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES