Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):2037–2047. doi: 10.1093/genetics/162.4.2037

BEST: a novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development.

Sudhir Kumar 1, Karthik Jayaraman 1, Sethuraman Panchanathan 1, Rajalakshmi Gurunathan 1, Ana Marti-Subirana 1, Stuart J Newfeld 1
PMCID: PMC1462359  PMID: 12524369

Abstract

Embryonic gene expression patterns are an indispensable part of modern developmental biology. Currently, investigators must visually inspect numerous images containing embryonic expression patterns to identify spatially similar patterns for inferring potential genetic interactions. The lack of a computational approach to identify pattern similarities is an impediment to advancement in developmental biology research because of the rapidly increasing amount of available embryonic gene expression data. Therefore, we have developed computational approaches to automate the comparison of gene expression patterns contained in images of early stage Drosophila melanogaster embryos (prior to the beginning of germ-band elongation); similarities and differences in gene expression patterns in these early stages have extensive developmental effects. Here we describe a basic expression search tool (BEST) to retrieve best matching expression patterns for a given query expression pattern and a computational device for gene interaction inference using gene expression pattern images and information on the associated genotypes and probes. Analysis of a prototype collection of Drosophila gene expression pattern images is presented to demonstrate the utility of these methods in identifying biologically meaningful matches and inferring gene interactions by direct image content analysis. In particular, the use of BEST searches for gene expression patterns is akin to that of BLAST searches for finding similar sequences. These computational developmental biology methodologies are likely to make the great wealth of embryonic gene expression pattern data easily accessible and to accelerate the discovery of developmental networks.

Full Text

The Full Text of this article is available as a PDF (338.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Arnosti D. N., Gray S., Barolo S., Zhou J., Levine M. The gap protein knirps mediates both quenching and direct repression in the Drosophila embryo. EMBO J. 1996 Jul 15;15(14):3659–3666. [PMC free article] [PubMed] [Google Scholar]
  3. Ashe H. L., Levine M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature. 1999 Apr 1;398(6726):427–431. doi: 10.1038/18892. [DOI] [PubMed] [Google Scholar]
  4. Casares F., Sánchez-Herrero E. Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development. 1995 Jun;121(6):1855–1866. doi: 10.1242/dev.121.6.1855. [DOI] [PubMed] [Google Scholar]
  5. Flores-Saaib R. D., Jia S., Courey A. J. Activation and repression by the C-terminal domain of Dorsal. Development. 2001 May;128(10):1869–1879. doi: 10.1242/dev.128.10.1869. [DOI] [PubMed] [Google Scholar]
  6. Fujioka M., Jaynes J. B., Goto T. Early even-skipped stripes act as morphogenetic gradients at the single cell level to establish engrailed expression. Development. 1995 Dec;121(12):4371–4382. doi: 10.1242/dev.121.12.4371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaul U., Jäckle H. Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products. Cell. 1987 Nov 20;51(4):549–555. doi: 10.1016/0092-8674(87)90124-3. [DOI] [PubMed] [Google Scholar]
  8. Gaul U., Jäckle H. Role of gap genes in early Drosophila development. Adv Genet. 1990;27:239–275. doi: 10.1016/s0065-2660(08)60027-9. [DOI] [PubMed] [Google Scholar]
  9. Gieseler K., Wilder E., Mariol M. C., Buratovitch M., Bérenger H., Graba Y., Pradel J. DWnt4 and wingless elicit similar cellular responses during imaginal development. Dev Biol. 2001 Apr 15;232(2):339–350. doi: 10.1006/dbio.2001.0184. [DOI] [PubMed] [Google Scholar]
  10. Goldstein R. E., Jiménez G., Cook O., Gur D., Paroush Z. Huckebein repressor activity in Drosophila terminal patterning is mediated by Groucho. Development. 1999 Sep;126(17):3747–3755. doi: 10.1242/dev.126.17.3747. [DOI] [PubMed] [Google Scholar]
  11. Grossniklaus U., Cadigan K. M., Gehring W. J. Three maternal coordinate systems cooperate in the patterning of the Drosophila head. Development. 1994 Nov;120(11):3155–3171. doi: 10.1242/dev.120.11.3155. [DOI] [PubMed] [Google Scholar]
  12. Gutjahr T., Frei E., Noll M. Complex regulation of early paired expression: initial activation by gap genes and pattern modulation by pair-rule genes. Development. 1993 Feb;117(2):609–623. doi: 10.1242/dev.117.2.609. [DOI] [PubMed] [Google Scholar]
  13. Hartmann C., Taubert H., Jäckle H., Pankratz M. J. A two-step mode of stripe formation in the Drosophila blastoderm requires interactions among primary pair rule genes. Mech Dev. 1994 Jan;45(1):3–13. doi: 10.1016/0925-4773(94)90049-3. [DOI] [PubMed] [Google Scholar]
  14. Hülskamp M., Lukowitz W., Beermann A., Glaser G., Tautz D. Differential regulation of target genes by different alleles of the segmentation gene hunchback in Drosophila. Genetics. 1994 Sep;138(1):125–134. doi: 10.1093/genetics/138.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hülskamp M., Pfeifle C., Tautz D. A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo. Nature. 1990 Aug 9;346(6284):577–580. doi: 10.1038/346577a0. [DOI] [PubMed] [Google Scholar]
  16. Hülskamp M., Tautz D. Gap genes and gradients--the logic behind the gaps. Bioessays. 1991 Jun;13(6):261–268. doi: 10.1002/bies.950130602. [DOI] [PubMed] [Google Scholar]
  17. Janody F., Reischl J., Dostatni N. Persistence of Hunchback in the terminal region of the Drosophila blastoderm embryo impairs anterior development. Development. 2000 Apr;127(8):1573–1582. doi: 10.1242/dev.127.8.1573. [DOI] [PubMed] [Google Scholar]
  18. Jaźwińska A., Kirov N., Wieschaus E., Roth S., Rushlow C. The Drosophila gene brinker reveals a novel mechanism of Dpp target gene regulation. Cell. 1999 Feb 19;96(4):563–573. doi: 10.1016/s0092-8674(00)80660-1. [DOI] [PubMed] [Google Scholar]
  19. Jin S., Martinek S., Joo W. S., Wortman J. R., Mirkovic N., Sali A., Yandell M. D., Pavletich N. P., Young M. W., Levine A. J. Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7301–7306. doi: 10.1073/pnas.97.13.7301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kania M. A., Bonner A. S., Duffy J. B., Gergen J. P. The Drosophila segmentation gene runt encodes a novel nuclear regulatory protein that is also expressed in the developing nervous system. Genes Dev. 1990 Oct;4(10):1701–1713. doi: 10.1101/gad.4.10.1701. [DOI] [PubMed] [Google Scholar]
  21. Klingler M., Soong J., Butler B., Gergen J. P. Disperse versus compact elements for the regulation of runt stripes in Drosophila. Dev Biol. 1996 Jul 10;177(1):73–84. doi: 10.1006/dbio.1996.0146. [DOI] [PubMed] [Google Scholar]
  22. Kobayashi M., Goldstein R. E., Fujioka M., Paroush Z., Jaynes J. B. Groucho augments the repression of multiple Even skipped target genes in establishing parasegment boundaries. Development. 2001 May;128(10):1805–1815. doi: 10.1242/dev.128.10.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. La Rosée-Borggreve A., Häder T., Wainwright D., Sauer F., Jäckle H. hairy stripe 7 element mediates activation and repression in response to different domains and levels of Krüppel in the Drosophila embryo. Mech Dev. 1999 Dec;89(1-2):133–140. doi: 10.1016/s0925-4773(99)00219-1. [DOI] [PubMed] [Google Scholar]
  24. Lardelli M., Ish-Horowicz D. Drosophila hairy pair-rule gene regulates embryonic patterning outside its apparent stripe domains. Development. 1993 May;118(1):255–266. doi: 10.1242/dev.118.1.255. [DOI] [PubMed] [Google Scholar]
  25. Lawrence P. A., Johnston P. Analysis of function of the pair-rule genes hairy, even-skipped and fushi tarazu in mosaic Drosophila embryos. Development. 1989 Dec;107(4):847–853. doi: 10.1242/dev.107.4.847. [DOI] [PubMed] [Google Scholar]
  26. Nasiadka A., Grill A., Krause H. M. Mechanisms regulating target gene selection by the homeodomain-containing protein Fushi tarazu. Development. 2000 Jul;127(13):2965–2976. doi: 10.1242/dev.127.13.2965. [DOI] [PubMed] [Google Scholar]
  27. Nibu Y., Levine M. S. CtBP-dependent activities of the short-range Giant repressor in the Drosophila embryo. Proc Natl Acad Sci U S A. 2001 May 15;98(11):6204–6208. doi: 10.1073/pnas.111158298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nibu Y., Zhang H., Bajor E., Barolo S., Small S., Levine M. dCtBP mediates transcriptional repression by Knirps, Krüppel and Snail in the Drosophila embryo. EMBO J. 1998 Dec 1;17(23):7009–7020. doi: 10.1093/emboj/17.23.7009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niessing D., Dostatni N., Jäckle H., Rivera-Pomar R. Sequence interval within the PEST motif of Bicoid is important for translational repression of caudal mRNA in the anterior region of the Drosophila embryo. EMBO J. 1999 Apr 1;18(7):1966–1973. doi: 10.1093/emboj/18.7.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pankratz M. J., Hoch M., Seifert E., Jäckle H. Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature. 1989 Sep 28;341(6240):337–340. doi: 10.1038/341337a0. [DOI] [PubMed] [Google Scholar]
  31. Pankratz M. J., Seifert E., Gerwin N., Billi B., Nauber U., Jäckle H. Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo. Cell. 1990 Apr 20;61(2):309–317. doi: 10.1016/0092-8674(90)90811-r. [DOI] [PubMed] [Google Scholar]
  32. Pelegri F., Lehmann R. A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Genetics. 1994 Apr;136(4):1341–1353. doi: 10.1093/genetics/136.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pignoni F., Steingrímsson E., Lengyel J. A. bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Development. 1992 May;115(1):239–251. doi: 10.1242/dev.115.1.239. [DOI] [PubMed] [Google Scholar]
  34. Ray R. P., Arora K., Nüsslein-Volhard C., Gelbart W. M. The control of cell fate along the dorsal-ventral axis of the Drosophila embryo. Development. 1991 Sep;113(1):35–54. doi: 10.1242/dev.113.1.35. [DOI] [PubMed] [Google Scholar]
  35. Riddihough G., Ish-Horowicz D. Individual stripe regulatory elements in the Drosophila hairy promoter respond to maternal, gap, and pair-rule genes. Genes Dev. 1991 May;5(5):840–854. doi: 10.1101/gad.5.5.840. [DOI] [PubMed] [Google Scholar]
  36. Rivera-Pomar R., Lu X., Perrimon N., Taubert H., Jäckle H. Activation of posterior gap gene expression in the Drosophila blastoderm. Nature. 1995 Jul 20;376(6537):253–256. doi: 10.1038/376253a0. [DOI] [PubMed] [Google Scholar]
  37. Rothe M., Wimmer E. A., Pankratz M. J., González-Gaitán M., Jäckle H. Identical transacting factor requirement for knirps and knirps-related Gene expression in the anterior but not in the posterior region of the Drosophila embryo. Mech Dev. 1994 Jun;46(3):169–181. doi: 10.1016/0925-4773(94)90069-8. [DOI] [PubMed] [Google Scholar]
  38. Rougvie A. E. Control of developmental timing in animals. Nat Rev Genet. 2001 Sep;2(9):690–701. doi: 10.1038/35088566. [DOI] [PubMed] [Google Scholar]
  39. Schulz C., Tautz D. Autonomous concentration-dependent activation and repression of Krüppel by hunchback in the Drosophila embryo. Development. 1994 Oct;120(10):3043–3049. doi: 10.1242/dev.120.10.3043. [DOI] [PubMed] [Google Scholar]
  40. Sommer R., Tautz D. Segmentation gene expression in the housefly Musca domestica. Development. 1991 Oct;113(2):419–430. doi: 10.1242/dev.113.2.419. [DOI] [PubMed] [Google Scholar]
  41. Steingrímsson E., Pignoni F., Liaw G. J., Lengyel J. A. Dual role of the Drosophila pattern gene tailless in embryonic termini. Science. 1991 Oct 18;254(5030):418–421. doi: 10.1126/science.1925599. [DOI] [PubMed] [Google Scholar]
  42. Takaesu N. T., Johnson A. N., Sultani O. H., Newfeld S. J. Combinatorial signaling by an unconventional Wg pathway and the Dpp pathway requires Nejire (CBP/p300) to regulate dpp expression in posterior tracheal branches. Dev Biol. 2002 Jul 15;247(2):225–236. doi: 10.1006/dbio.2002.0693. [DOI] [PubMed] [Google Scholar]
  43. Toy J., Yang J. M., Leppert G. S., Sundin O. H. The optx2 homeobox gene is expressed in early precursors of the eye and activates retina-specific genes. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10643–10648. doi: 10.1073/pnas.95.18.10643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tsai C. C., Kramer S. G., Gergen J. P. Pair-rule gene runt restricts orthodenticle expression to the presumptive head of the Drosophila embryo. Dev Genet. 1998;23(1):35–44. doi: 10.1002/(SICI)1520-6408(1998)23:1<35::AID-DVG4>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  45. Vincent A., Blankenship J. T., Wieschaus E. Integration of the head and trunk segmentation systems controls cephalic furrow formation in Drosophila. Development. 1997 Oct;124(19):3747–3754. doi: 10.1242/dev.124.19.3747. [DOI] [PubMed] [Google Scholar]
  46. Wu X., Vakani R., Small S. Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant. Development. 1998 Oct;125(19):3765–3774. doi: 10.1242/dev.125.19.3765. [DOI] [PubMed] [Google Scholar]
  47. Zhang H., Levine M. Groucho and dCtBP mediate separate pathways of transcriptional repression in the Drosophila embryo. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):535–540. doi: 10.1073/pnas.96.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES