Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1617–1630. doi: 10.1093/genetics/162.4.1617

kangaroo, a mobile element from Volvox carteri, is a member of a newly recognized third class of retrotransposons.

Leonard Duncan 1, Kristine Bouckaert 1, Fay Yeh 1, David L Kirk 1
PMCID: PMC1462361  PMID: 12524337

Abstract

Retrotransposons play an important role in the evolution of genomic structure and function. Here we report on the characterization of a novel retrotransposon called kangaroo from the multicellular green alga, Volvox carteri. kangaroo elements are highly mobile and their expression is developmentally regulated. They probably integrate via double-stranded, closed-circle DNA intermediates through the action of an encoded recombinase related to the lambda-site-specific integrase. Phylogenetic analysis indicates that kangaroo elements are closely related to other unorthodox retrotransposons including PAT (from a nematode), DIRS-1 (from Dictyostelium), and DrDIRS1 (from zebrafish). PAT and kangaroo both contain split direct repeat (SDR) termini, and here we show that DIRS-1 and DrDIRS1 elements contain terminal features structurally related to SDRs. Thus, these mobile elements appear to define a third class of retrotransposons (the DIRS1 group) that are unified by common structural features, genes, and integration mechanisms, all of which differ from those of LTR and conventional non-LTR retrotransposons.

Full Text

The Full Text of this article is available as a PDF (792.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awasaki T., Juni N., Yoshida K. M. An eye imaginal disc-specific transcriptional enhancer in the long terminal repeat of the tom retrotransposon is responsible for eye morphology mutations of Drosophila ananassae. Mol Gen Genet. 1996 May 23;251(2):161–166. doi: 10.1007/BF02172914. [DOI] [PubMed] [Google Scholar]
  2. Bateman Alex, Birney Ewan, Cerruti Lorenzo, Durbin Richard, Etwiller Laurence, Eddy Sean R., Griffiths-Jones Sam, Howe Kevin L., Marshall Mhairi, Sonnhammer Erik L. L. The Pfam protein families database. Nucleic Acids Res. 2002 Jan 1;30(1):276–280. doi: 10.1093/nar/30.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brönner G., Taubert H., Jäckle H. Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon. Chromosoma. 1995 Jul;103(10):669–675. doi: 10.1007/BF00344227. [DOI] [PubMed] [Google Scholar]
  4. Cappello J., Handelsman K., Lodish H. F. Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell. 1985 Nov;43(1):105–115. doi: 10.1016/0092-8674(85)90016-9. [DOI] [PubMed] [Google Scholar]
  5. Cohen S. M., Cappello J., Lodish H. F. Transcription of Dictyostelium discoideum transposable element DIRS-1. Mol Cell Biol. 1984 Nov;4(11):2332–2340. doi: 10.1128/mcb.4.11.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craig N. L. Target site selection in transposition. Annu Rev Biochem. 1997;66:437–474. doi: 10.1146/annurev.biochem.66.1.437. [DOI] [PubMed] [Google Scholar]
  7. Day A., Rochaix J. D. A transposon with an unusual LTR arrangement from Chlamydomonas reinhardtii contains an internal tandem array of 76 bp repeats. Nucleic Acids Res. 1991 Mar 25;19(6):1259–1266. doi: 10.1093/nar/19.6.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Day A., Schirmer-Rahire M., Kuchka M. R., Mayfield S. P., Rochaix J. D. A transposon with an unusual arrangement of long terminal repeats in the green alga Chlamydomonas reinhardtii. EMBO J. 1988 Jul;7(7):1917–1927. doi: 10.1002/j.1460-2075.1988.tb03029.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eickbush T. H. Telomerase and retrotransposons: which came first? Science. 1997 Aug 15;277(5328):911–912. doi: 10.1126/science.277.5328.911. [DOI] [PubMed] [Google Scholar]
  10. Errede B., Company M., Hutchison C. A., 3rd Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol Cell Biol. 1987 Jan;7(1):258–265. doi: 10.1128/mcb.7.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finnegan D. J. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989 Apr;5(4):103–107. doi: 10.1016/0168-9525(89)90039-5. [DOI] [PubMed] [Google Scholar]
  12. Frommer G., Schuh R., Jäckle H. Localized expression of a novel micropia-like element in the blastoderm of Drosophila melanogaster is dependent on the anterior morphogen bicoid. Chromosoma. 1994 Apr;103(2):82–89. doi: 10.1007/BF00352316. [DOI] [PubMed] [Google Scholar]
  13. Furano A. V. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol. 2000;64:255–294. doi: 10.1016/s0079-6603(00)64007-2. [DOI] [PubMed] [Google Scholar]
  14. Greene J. M., Otani H., Good P. J., Dawid I. B. A novel family of retrotransposon-like elements in Xenopus laevis with a transcript inducible by two growth factors. Nucleic Acids Res. 1993 May 25;21(10):2375–2381. doi: 10.1093/nar/21.10.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gruber H., Goetinck S. D., Kirk D. L., Schmitt R. The nitrate reductase-encoding gene of Volvox carteri: map location, sequence and induction kinetics. Gene. 1992 Oct 12;120(1):75–83. doi: 10.1016/0378-1119(92)90011-d. [DOI] [PubMed] [Google Scholar]
  16. Haren L., Ton-Hoang B., Chandler M. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol. 1999;53:245–281. doi: 10.1146/annurev.micro.53.1.245. [DOI] [PubMed] [Google Scholar]
  17. Harper J. F., Huson K. S., Kirk D. L. Use of repetitive sequences to identify DNA polymorphisms linked to regA, a developmentally important locus in Volvox. Genes Dev. 1987 Aug;1(6):573–584. doi: 10.1101/gad.1.6.573. [DOI] [PubMed] [Google Scholar]
  18. Jeong Br Byeong-ryool, Wu-Scharf Dancia, Zhang Chaomei, Cerutti Heriberto. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci U S A. 2002 Jan 8;99(2):1076–1081. doi: 10.1073/pnas.022392999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kerber B., Fellert S., Taubert H., Hoch M. Germ line and embryonic expression of Fex, a member of the Drosophila F-element retrotransposon family, is mediated by an internal cis-regulatory control region. Mol Cell Biol. 1996 Jun;16(6):2998–3007. doi: 10.1128/mcb.16.6.2998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kirk D. L., Kirk M. M. Protein synthetic patterns during the asexual life cycle of Volvox carteri. Dev Biol. 1983 Apr;96(2):493–506. doi: 10.1016/0012-1606(83)90186-0. [DOI] [PubMed] [Google Scholar]
  21. Kirk M. M., Stark K., Miller S. M., Müller W., Taillon B. E., Gruber H., Schmitt R., Kirk D. L. regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development. 1999 Feb;126(4):639–647. doi: 10.1242/dev.126.4.639. [DOI] [PubMed] [Google Scholar]
  22. Kumar A., Bennetzen J. L. Plant retrotransposons. Annu Rev Genet. 1999;33:479–532. doi: 10.1146/annurev.genet.33.1.479. [DOI] [PubMed] [Google Scholar]
  23. Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem. 1989;58:913–949. doi: 10.1146/annurev.bi.58.070189.004405. [DOI] [PubMed] [Google Scholar]
  24. Lindauer A., Fraser D., Brüderlein M., Schmitt R. Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett. 1993 Mar 22;319(3):261–266. doi: 10.1016/0014-5793(93)80559-d. [DOI] [PubMed] [Google Scholar]
  25. Malik H. S., Eickbush T. H. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 2001 Jul;11(7):1187–1197. doi: 10.1101/gr.185101. [DOI] [PubMed] [Google Scholar]
  26. Marsano R. M., Moschetti R., Caggese C., Lanave C., Barsanti P., Caizzi R. The complete Tirant transposable element in Drosophila melanogaster shows a structural relationship with retrovirus-like retrotransposons. Gene. 2000 Apr 18;247(1-2):87–95. doi: 10.1016/s0378-1119(00)00115-3. [DOI] [PubMed] [Google Scholar]
  27. Miller S. M., Kirk D. L. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development. 1999 Feb;126(4):649–658. doi: 10.1242/dev.126.4.649. [DOI] [PubMed] [Google Scholar]
  28. Miller S. M., Schmitt R., Kirk D. L. Jordan, an active Volvox transposable element similar to higher plant transposons. Plant Cell. 1993 Sep;5(9):1125–1138. doi: 10.1105/tpc.5.9.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mozer B. A., Benzer S. Ingrowth by photoreceptor axons induces transcription of a retrotransposon in the developing Drosophila brain. Development. 1994 May;120(5):1049–1058. doi: 10.1242/dev.120.5.1049. [DOI] [PubMed] [Google Scholar]
  30. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 1998 Jan 15;26(2):391–406. doi: 10.1093/nar/26.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ostertag E. M., Kazazian H. H., Jr Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501–538. doi: 10.1146/annurev.genet.35.102401.091032. [DOI] [PubMed] [Google Scholar]
  32. Rein A., Henderson L. E., Levin J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci. 1998 Aug;23(8):297–301. doi: 10.1016/s0968-0004(98)01256-0. [DOI] [PubMed] [Google Scholar]
  33. Ruiz-Pérez V. L., Murillo F. J., Torres-Martínez S. Prt1, an unusual retrotransposon-like sequence in the fungus Phycomyces blakesleeanus. Mol Gen Genet. 1996 Dec 13;253(3):324–333. doi: 10.1007/pl00008599. [DOI] [PubMed] [Google Scholar]
  34. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  35. Scott J. R., Churchward G. G. Conjugative transposition. Annu Rev Microbiol. 1995;49:367–397. doi: 10.1146/annurev.mi.49.100195.002055. [DOI] [PubMed] [Google Scholar]
  36. Tam L. W., Kirk D. L. Identification of cell-type-specific genes of Volvox carteri and characterization of their expression during the asexual life cycle. Dev Biol. 1991 May;145(1):51–66. doi: 10.1016/0012-1606(91)90212-l. [DOI] [PubMed] [Google Scholar]
  37. Vogel A. M., Gerster T. Promoter activity of the zebrafish bhikhari retroelement requires an intact activin signaling pathway. Mech Dev. 1999 Jul;85(1-2):133–146. doi: 10.1016/s0925-4773(99)00104-5. [DOI] [PubMed] [Google Scholar]
  38. Wu-Scharf D., Jeong B., Zhang C., Cerutti H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science. 2000 Nov 10;290(5494):1159–1162. doi: 10.1126/science.290.5494.1159. [DOI] [PubMed] [Google Scholar]
  39. Xiong Y., Eickbush T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. doi: 10.1002/j.1460-2075.1990.tb07536.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. de Chastonay Y., Felder H., Link C., Aeby P., Tobler H., Müller F. Unusual features of the retroid element PAT from the nematode Panagrellus redivivus. Nucleic Acids Res. 1992 Apr 11;20(7):1623–1628. doi: 10.1093/nar/20.7.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES