Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1655–1674. doi: 10.1093/genetics/162.4.1655

The genetic architecture of Drosophila sensory bristle number.

Christy L Dilda 1, Trudy F C Mackay 1
PMCID: PMC1462363  PMID: 12524340

Abstract

We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits.

Full Text

The Full Text of this article is available as a PDF (436.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R., Lyman R. F., Mackay T. F. Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster. Genetics. 1996 May;143(1):293–301. doi: 10.1093/genetics/143.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barton N. H. Pleiotropic models of quantitative variation. Genetics. 1990 Mar;124(3):773–782. doi: 10.1093/genetics/124.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton N. H., Turelli M. Evolutionary quantitative genetics: how little do we know? Annu Rev Genet. 1989;23:337–370. doi: 10.1146/annurev.ge.23.120189.002005. [DOI] [PubMed] [Google Scholar]
  4. Bost B., de Vienne D., Hospital F., Moreau L., Dillmann C. Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics. 2001 Apr;157(4):1773–1787. doi: 10.1093/genetics/157.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doerge R. W., Churchill G. A. Permutation tests for multiple loci affecting a quantitative character. Genetics. 1996 Jan;142(1):285–294. doi: 10.1093/genetics/142.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gimelfarb A. Genotypic variation for a quantitative character maintained under stabilizing selection without mutations: epistasis. Genetics. 1989 Sep;123(1):217–227. doi: 10.1093/genetics/123.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gurganus M. C., Fry J. D., Nuzhdin S. V., Pasyukova E. G., Lyman R. F., Mackay T. F. Genotype-environment interaction at quantitative trait loci affecting sensory bristle number in Drosophila melanogaster. Genetics. 1998 Aug;149(4):1883–1898. doi: 10.1093/genetics/149.4.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gurganus M. C., Nuzhdin S. V., Leips J. W., Mackay T. F. High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics. 1999 Aug;152(4):1585–1604. doi: 10.1093/genetics/152.4.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jiang C., Zeng Z. B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics. 1995 Jul;140(3):1111–1127. doi: 10.1093/genetics/140.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jin W., Riley R. M., Wolfinger R. D., White K. P., Passador-Gurgel G., Gibson G. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nat Genet. 2001 Dec;29(4):389–395. doi: 10.1038/ng766. [DOI] [PubMed] [Google Scholar]
  12. Jones L. P., Frankham R., Barker J. S. The effects of population size and selection intesnity in selection for a quantitative character in Drosophila. II. Long-term response to selection. Genet Res. 1968 Dec;12(3):249–266. doi: 10.1017/s001667230001185x. [DOI] [PubMed] [Google Scholar]
  13. Kania A., Salzberg A., Bhat M., D'Evelyn D., He Y., Kiss I., Bellen H. J. P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster. Genetics. 1995 Apr;139(4):1663–1678. doi: 10.1093/genetics/139.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. Genetics. 1999 Jul;152(3):1203–1216. doi: 10.1093/genetics/152.3.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kearsey M. U., Barnes B. W. Variation for metrical characters in Drosophila populations. II. Natural selection. Heredity (Edinb) 1970 Feb;25(1):11–21. doi: 10.1038/hdy.1970.2. [DOI] [PubMed] [Google Scholar]
  16. Keightley P. D., Mackay T. F., Caballero A. Accounting for bias in estimates of the rate of polygenic mutation. Proc Biol Sci. 1993 Sep 22;253(1338):291–296. doi: 10.1098/rspb.1993.0116. [DOI] [PubMed] [Google Scholar]
  17. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Linney R., Barnes B. W., Kearsey M. J. Variation for metrical characters in drosophila populations. 3. The nature of selection. Heredity (Edinb) 1971 Oct;27(2):163–174. doi: 10.1038/hdy.1971.82. [DOI] [PubMed] [Google Scholar]
  19. Long A. D., Lyman R. F., Langley C. H., Mackay T. F. Two sites in the Delta gene region contribute to naturally occurring variation in bristle number in Drosophila melanogaster. Genetics. 1998 Jun;149(2):999–1017. doi: 10.1093/genetics/149.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Long A. D., Lyman R. F., Morgan A. H., Langley C. H., Mackay T. F. Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster. Genetics. 2000 Mar;154(3):1255–1269. doi: 10.1093/genetics/154.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Long A. D., Mullaney S. L., Mackay T. F., Langley C. H. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1497–1510. doi: 10.1093/genetics/144.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lyman R. F., Lai C., MacKay T. F. Linkage disequilibrium mapping of molecular polymorphisms at the scabrous locus associated with naturally occurring variation in bristle number in Drosophila melanogaster. Genet Res. 1999 Dec;74(3):303–311. doi: 10.1017/s001667239900419x. [DOI] [PubMed] [Google Scholar]
  24. Lyman R. F., Lawrence F., Nuzhdin S. V., Mackay T. F. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics. 1996 May;143(1):277–292. doi: 10.1093/genetics/143.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lyman R. F., Mackay T. F. Candidate quantitative trait loci and naturally occurring phenotypic variation for bristle number in Drosophila melanogaster: the Delta-Hairless gene region. Genetics. 1998 Jun;149(2):983–998. doi: 10.1093/genetics/149.2.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mackay T. F., Fry J. D. Polygenic mutation in Drosophila melanogaster: genetic interactions between selection lines and candidate quantitative trait loci. Genetics. 1996 Oct;144(2):671–688. doi: 10.1093/genetics/144.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mackay T. F., Hackett J. B., Lyman R. F., Wayne M. L., Anholt R. R. Quantitative genetic variation of odor-guided behavior in a natural population of Drosophila melanogaster. Genetics. 1996 Oct;144(2):727–735. doi: 10.1093/genetics/144.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mackay T. F., Lyman R. F., Hill W. G. Polygenic mutation in Drosophila melanogaster: non-linear divergence among unselected strains. Genetics. 1995 Feb;139(2):849–859. doi: 10.1093/genetics/139.2.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mackay T. F., Lyman R. F., Jackson M. S. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics. 1992 Feb;130(2):315–332. doi: 10.1093/genetics/130.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mackay T. F. Quantitative trait loci in Drosophila. Nat Rev Genet. 2001 Jan;2(1):11–20. doi: 10.1038/35047544. [DOI] [PubMed] [Google Scholar]
  31. Nuzhdin S. V., Dilda C. L., Mackay T. F. The genetic architecture of selection response. Inferences from fine-scale mapping of bristle number quantitative trait loci in Drosophila melanogaster. Genetics. 1999 Nov;153(3):1317–1331. doi: 10.1093/genetics/153.3.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nuzhdin S. V., Fry J. D., Mackay T. F. Polygenic mutation in Drosophila melanogaster: the causal relationship of bristle number to fitness. Genetics. 1995 Feb;139(2):861–872. doi: 10.1093/genetics/139.2.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nuzhdin S. V., Pasyukova E. G., Dilda C. L., Zeng Z. B., Mackay T. F. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9734–9739. doi: 10.1073/pnas.94.18.9734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salzberg A., Prokopenko S. N., He Y., Tsai P., Pál M., Maróy P., Glover D. M., Deák P., Bellen H. J. P-element insertion alleles of essential genes on the third chromosome of Drosophila melanogaster: mutations affecting embryonic PNS development. Genetics. 1997 Dec;147(4):1723–1741. doi: 10.1093/genetics/147.4.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vieira C., Pasyukova E. G., Zeng Z. B., Hackett J. B., Lyman R. F., Mackay T. F. Genotype-environment interaction for quantitative trait loci affecting life span in Drosophila melanogaster. Genetics. 2000 Jan;154(1):213–227. doi: 10.1093/genetics/154.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wayne M. L., Hackett J. B., Dilda C. L., Nuzhdin S. V., Pasyukova E. G., Mackay T. F. Quantitative trait locus mapping of fitness-related traits in Drosophila melanogaster. Genet Res. 2001 Feb;77(1):107–116. doi: 10.1017/s0016672300004894. [DOI] [PubMed] [Google Scholar]
  37. Zeng Z. B., Kao C. H., Basten C. J. Estimating the genetic architecture of quantitative traits. Genet Res. 1999 Dec;74(3):279–289. doi: 10.1017/s0016672399004255. [DOI] [PubMed] [Google Scholar]
  38. Zeng Z. B. Precision mapping of quantitative trait loci. Genetics. 1994 Apr;136(4):1457–1468. doi: 10.1093/genetics/136.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zeng Z. B. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10972–10976. doi: 10.1073/pnas.90.23.10972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES