Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1675–1685. doi: 10.1093/genetics/162.4.1675

A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span.

Brenda L Newman 1, James R Lundblad 1, Yang Chen 1, Sarah M Smolik 1
PMCID: PMC1462366  PMID: 12524341

Abstract

Control of chromosome structure is important in the regulation of gene expression, recombination, DNA repair, and chromosome stability. In a two-hybrid screen for proteins that interact with the Drosophila CREB-binding protein (dCBP), a known histone acetyltransferase and transcriptional coactivator, we identified the Drosophila homolog of a yeast chromatin regulator, Sir2. In yeast, Sir2 silences genes via an intrinsic NAD(+)-dependent histone deacetylase activity. In addition, Sir2 promotes longevity in yeast and in Caenorhabditis elegans. In this report, we characterize the Drosophila Sir2 (dSir2) gene and its product and describe the generation of dSir2 amorphic alleles. We found that dSir2 expression is developmentally regulated and that dSir2 has an intrinsic NAD(+)-dependent histone deacetylase activity. The dSir2 mutants are viable, fertile, and recessive suppressors of position-effect variegation (PEV), indicating that, as in yeast, dSir2 is not an essential function for viability and is a regulator of heterochromatin formation and/or function. However, mutations in dSir2 do not shorten life span as predicted from studies in yeast and worms.

Full Text

The Full Text of this article is available as a PDF (297.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akimaru H., Chen Y., Dai P., Hou D. X., Nonaka M., Smolik S. M., Armstrong S., Goodman R. H., Ishii S. Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling. Nature. 1997 Apr 17;386(6626):735–738. doi: 10.1038/386735a0. [DOI] [PubMed] [Google Scholar]
  2. Bantignies F., Goodman R. H., Smolik S. M. Functional interaction between the coactivator Drosophila CREB-binding protein and ASH1, a member of the trithorax group of chromatin modifiers. Mol Cell Biol. 2000 Dec;20(24):9317–9330. doi: 10.1128/mcb.20.24.9317-9330.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barlow A. L., van Drunen C. M., Johnson C. A., Tweedie S., Bird A., Turner B. M. dSIR2 and dHDAC6: two novel, inhibitor-resistant deacetylases in Drosophila melanogaster. Exp Cell Res. 2001 Apr 15;265(1):90–103. doi: 10.1006/excr.2001.5162. [DOI] [PubMed] [Google Scholar]
  4. Brachmann C. B., Sherman J. M., Devine S. E., Cameron E. E., Pillus L., Boeke J. D. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 1995 Dec 1;9(23):2888–2902. doi: 10.1101/gad.9.23.2888. [DOI] [PubMed] [Google Scholar]
  5. Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 1993 Apr;7(4):592–604. doi: 10.1101/gad.7.4.592. [DOI] [PubMed] [Google Scholar]
  6. Braunstein M., Sobel R. E., Allis C. D., Turner B. M., Broach J. R. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol Cell Biol. 1996 Aug;16(8):4349–4356. doi: 10.1128/mcb.16.8.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eissenberg J. C., Morris G. D., Reuter G., Hartnett T. The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. Genetics. 1992 Jun;131(2):345–352. doi: 10.1093/genetics/131.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Farkas G., Gausz J., Galloni M., Reuter G., Gyurkovics H., Karch F. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature. 1994 Oct 27;371(6500):806–808. doi: 10.1038/371806a0. [DOI] [PubMed] [Google Scholar]
  10. Fauvarque M. O., Dura J. M. polyhomeotic regulatory sequences induce developmental regulator-dependent variegation and targeted P-element insertions in Drosophila. Genes Dev. 1993 Aug;7(8):1508–1520. doi: 10.1101/gad.7.8.1508. [DOI] [PubMed] [Google Scholar]
  11. Fernandez-Funez P., Nino-Rosales M. L., de Gouyon B., She W. C., Luchak J. M., Martinez P., Turiegano E., Benito J., Capovilla M., Skinner P. J. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature. 2000 Nov 2;408(6808):101–106. doi: 10.1038/35040584. [DOI] [PubMed] [Google Scholar]
  12. Frye R. A. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem Biophys Res Commun. 1999 Jun 24;260(1):273–279. doi: 10.1006/bbrc.1999.0897. [DOI] [PubMed] [Google Scholar]
  13. Frye R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000 Jul 5;273(2):793–798. doi: 10.1006/bbrc.2000.3000. [DOI] [PubMed] [Google Scholar]
  14. Goodman R. H., Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000 Jul 1;14(13):1553–1577. [PubMed] [Google Scholar]
  15. Gottlieb S., Esposito R. E. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell. 1989 Mar 10;56(5):771–776. doi: 10.1016/0092-8674(89)90681-8. [DOI] [PubMed] [Google Scholar]
  16. Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 2000 May 1;14(9):1021–1026. [PubMed] [Google Scholar]
  17. Iliopoulos I., Török I., Mechler B. M. The DnaJ60 gene of Drosophila melanogaster encodes a new member of the DnaJ family of proteins. Biol Chem. 1997 Oct;378(10):1177–1181. [PubMed] [Google Scholar]
  18. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  19. Judd B. H. Mutations of zeste that mediate transvection are recessive enhancers of position-effect variegation in Drosophila melanogaster. Genetics. 1995 Sep;141(1):245–253. doi: 10.1093/genetics/141.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaeberlein M., McVey M., Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 1999 Oct 1;13(19):2570–2580. doi: 10.1101/gad.13.19.2570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laurenson P., Rine J. Silencers, silencing, and heritable transcriptional states. Microbiol Rev. 1992 Dec;56(4):543–560. doi: 10.1128/mr.56.4.543-560.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LeGendre N. Immobilon-P transfer membrane: applications and utility in protein biochemical analysis. Biotechniques. 1990 Dec;9(6 Suppl):788–805. [PubMed] [Google Scholar]
  23. Rosenberg Miriam I., Parkhurst Susan M. Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl) bHLH repressors in segmentation and sex determination. Cell. 2002 May 17;109(4):447–458. doi: 10.1016/s0092-8674(02)00732-8. [DOI] [PubMed] [Google Scholar]
  24. Sass G. L., Henikoff S. Comparative analysis of position-effect variegation mutations in Drosophila melanogaster delineates the targets of modifiers. Genetics. 1998 Feb;148(2):733–741. doi: 10.1093/genetics/148.2.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sherman J. M., Stone E. M., Freeman-Cook L. L., Brachmann C. B., Boeke J. D., Pillus L. The conserved core of a human SIR2 homologue functions in yeast silencing. Mol Biol Cell. 1999 Sep;10(9):3045–3059. doi: 10.1091/mbc.10.9.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sinclair D. A., Guarente L. Extrachromosomal rDNA circles--a cause of aging in yeast. Cell. 1997 Dec 26;91(7):1033–1042. doi: 10.1016/s0092-8674(00)80493-6. [DOI] [PubMed] [Google Scholar]
  27. Tanner K. G., Landry J., Sternglanz R., Denu J. M. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178–14182. doi: 10.1073/pnas.250422697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tanny J. C., Dowd G. J., Huang J., Hilz H., Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell. 1999 Dec 23;99(7):735–745. doi: 10.1016/s0092-8674(00)81671-2. [DOI] [PubMed] [Google Scholar]
  29. Turner B. M., Birley A. J., Lavender J. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell. 1992 Apr 17;69(2):375–384. doi: 10.1016/0092-8674(92)90417-b. [DOI] [PubMed] [Google Scholar]
  30. Yang Y. H., Chen Y. H., Zhang C. Y., Nimmakayalu M. A., Ward D. C., Weissman S. Cloning and characterization of two mouse genes with homology to the yeast Sir2 gene. Genomics. 2000 Nov 1;69(3):355–369. doi: 10.1006/geno.2000.6360. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES