Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1961–1977. doi: 10.1093/genetics/162.4.1961

Organization, expression and evolution of a disease resistance gene cluster in soybean.

Michelle A Graham 1, Laura Fredrick Marek 1, Randy C Shoemaker 1
PMCID: PMC1462381  PMID: 12524363

Abstract

PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process.

Full Text

The Full Text of this article is available as a PDF (892.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., te Lintel Hekkert B., Holub E. B., Beynon J. L., Stiekema W. J., Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Plant Microbe Interact. 1998 Apr;11(4):251–258. doi: 10.1094/MPMI.1998.11.4.251. [DOI] [PubMed] [Google Scholar]
  2. Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol. 2001 Aug;2(8):675–680. doi: 10.1038/90609. [DOI] [PubMed] [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson P. A., Lawrence G. J., Morrish B. C., Ayliffe M. A., Finnegan E. J., Ellis J. G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell. 1997 Apr;9(4):641–651. doi: 10.1105/tpc.9.4.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Botella M. A., Parker J. E., Frost L. N., Bittner-Eddy P. D., Beynon J. L., Daniels M. J., Holub E. B., Jones J. D. Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell. 1998 Nov;10(11):1847–1860. doi: 10.1105/tpc.10.11.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooley M. B., Pathirana S., Wu H. J., Kachroo P., Klessig D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell. 2000 May;12(5):663–676. doi: 10.1105/tpc.12.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dangl J. L., Jones J. D. Plant pathogens and integrated defence responses to infection. Nature. 2001 Jun 14;411(6839):826–833. doi: 10.1038/35081161. [DOI] [PubMed] [Google Scholar]
  8. Dinesh-Kumar S. P., Baker B. J. Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1908–1913. doi: 10.1073/pnas.020367497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon M. S., Hatzixanthis K., Jones D. A., Harrison K., Jones J. D. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell. 1998 Nov;10(11):1915–1925. doi: 10.1105/tpc.10.11.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dodds P. N., Lawrence G. J., Ellis J. G. Six amino acid changes confined to the leucine-rich repeat beta-strand/beta-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell. 2001 Jan;13(1):163–178. doi: 10.1105/tpc.13.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellis J. G., Lawrence G. J., Luck J. E., Dodds P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell. 1999 Mar;11(3):495–506. doi: 10.1105/tpc.11.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gassmann W., Hinsch M. E., Staskawicz B. J. The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J. 1999 Nov;20(3):265–277. doi: 10.1046/j.1365-313x.1999.t01-1-00600.x. [DOI] [PubMed] [Google Scholar]
  13. Graham A., Marek F., Shoemaker C. PCR Sampling of disease resistance-like sequences from a disease resistance gene cluster in soybean. Theor Appl Genet. 2002 May 25;105(1):50–57. doi: 10.1007/s00122-001-0846-4. [DOI] [PubMed] [Google Scholar]
  14. Graham M. A., Marek L. F., Lohnes D., Cregan P., Shoemaker R. C. Expression and genome organization of resistance gene analogs in soybean. Genome. 2000 Feb;43(1):86–93. doi: 10.1139/g99-107. [DOI] [PubMed] [Google Scholar]
  15. Grant M. R., Godiard L., Straube E., Ashfield T., Lewald J., Sattler A., Innes R. W., Dangl J. L. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science. 1995 Aug 11;269(5225):843–846. doi: 10.1126/science.7638602. [DOI] [PubMed] [Google Scholar]
  16. Görlach J., Volrath S., Knauf-Beiter G., Hengy G., Beckhove U., Kogel K. H., Oostendorp M., Staub T., Ward E., Kessmann H. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell. 1996 Apr;8(4):629–643. doi: 10.1105/tpc.8.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hammond-Kosack Kim E., Jones Jonathan D. G. PLANT DISEASE RESISTANCE GENES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):575–607. doi: 10.1146/annurev.arplant.48.1.575. [DOI] [PubMed] [Google Scholar]
  18. Hebsgaard S. M., Korning P. G., Tolstrup N., Engelbrecht J., Rouzé P., Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996 Sep 1;24(17):3439–3452. doi: 10.1093/nar/24.17.3439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heo W. D., Lee S. H., Kim M. C., Kim J. C., Chung W. S., Chun H. J., Lee K. J., Park C. Y., Park H. C., Choi J. Y. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):766–771. doi: 10.1073/pnas.96.2.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hulbert S. H., Webb C. A., Smith S. M., Sun Q. Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol. 2001;39:285–312. doi: 10.1146/annurev.phyto.39.1.285. [DOI] [PubMed] [Google Scholar]
  21. Hwang C. F., Bhakta A. V., Truesdell G. M., Pudlo W. M., Williamson V. M. Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell. 2000 Aug;12(8):1319–1329. doi: 10.1105/tpc.12.8.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kanazin V., Marek L. F., Shoemaker R. C. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11746–11750. doi: 10.1073/pnas.93.21.11746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kim Min C., Panstruga Ralph, Elliott Candace, Müller Judith, Devoto Alessandra, Yoon Hae W., Park Hyeong C., Cho Moo J., Schulze-Lefert Paul. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature. 2002 Mar 28;416(6879):447–451. doi: 10.1038/416447a. [DOI] [PubMed] [Google Scholar]
  24. Leister D., Ballvora A., Salamini F., Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet. 1996 Dec;14(4):421–429. doi: 10.1038/ng1296-421. [DOI] [PubMed] [Google Scholar]
  25. Lewit-Bentley A., Réty S. EF-hand calcium-binding proteins. Curr Opin Struct Biol. 2000 Dec;10(6):637–643. doi: 10.1016/s0959-440x(00)00142-1. [DOI] [PubMed] [Google Scholar]
  26. Luck J. E., Lawrence G. J., Dodds P. N., Shepherd K. W., Ellis J. G. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell. 2000 Aug;12(8):1367–1377. doi: 10.1105/tpc.12.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marek L. F., Shoemaker R. C. BAC contig development by fingerprint analysis in soybean. Genome. 1997 Aug;40(4):420–427. doi: 10.1139/g97-056. [DOI] [PubMed] [Google Scholar]
  28. Mes J. J., van Doorn A. A., Wijbrandi J., Simons G., Cornelissen B. J., Haring M. A. Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J. 2000 Jul;23(2):183–193. doi: 10.1046/j.1365-313x.2000.00765.x. [DOI] [PubMed] [Google Scholar]
  29. Meyers B. C., Dickerman A. W., Michelmore R. W., Sivaramakrishnan S., Sobral B. W., Young N. D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999 Nov;20(3):317–332. doi: 10.1046/j.1365-313x.1999.t01-1-00606.x. [DOI] [PubMed] [Google Scholar]
  30. Meyers B. C., Shen K. A., Rohani P., Gaut B. S., Michelmore R. W. Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell. 1998 Nov;10(11):1833–1846. doi: 10.1105/tpc.10.11.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Noël L., Moores T. L., van Der Biezen E. A., Parniske M., Daniels M. J., Parker J. E., Jones J. D. Pronounced intraspecific haplotype divergence at the RPP5 complex disease resistance locus of Arabidopsis. Plant Cell. 1999 Nov;11(11):2099–2112. [PMC free article] [PubMed] [Google Scholar]
  32. Nürnberger T., Scheel D. Signal transmission in the plant immune response. Trends Plant Sci. 2001 Aug;6(8):372–379. doi: 10.1016/s1360-1385(01)02019-2. [DOI] [PubMed] [Google Scholar]
  33. Okushima Y., Koizumi N., Kusano T., Sano H. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol Biol. 2000 Feb;42(3):479–488. doi: 10.1023/a:1006393326985. [DOI] [PubMed] [Google Scholar]
  34. Parniske M., Hammond-Kosack K. E., Golstein C., Thomas C. M., Jones D. A., Harrison K., Wulff B. B., Jones J. D. Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell. 1997 Dec 12;91(6):821–832. doi: 10.1016/s0092-8674(00)80470-5. [DOI] [PubMed] [Google Scholar]
  35. Richly Erik, Kurth Joachim, Leister Dario. Mode of amplification and reorganization of resistance genes during recent Arabidopsis thaliana evolution. Mol Biol Evol. 2002 Jan;19(1):76–84. doi: 10.1093/oxfordjournals.molbev.a003984. [DOI] [PubMed] [Google Scholar]
  36. Shen K. A., Meyers B. C., Islam-Faridi M. N., Chin D. B., Stelly D. M., Michelmore R. W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to clusters of resistance genes in lettuce. Mol Plant Microbe Interact. 1998 Aug;11(8):815–823. doi: 10.1094/MPMI.1998.11.8.815. [DOI] [PubMed] [Google Scholar]
  37. Silverstein K. A., Kilian A., Freeman J. L., Johnson J. E., Awad I. A., Retzel E. F. PANAL: an integrated resource for Protein sequence ANALysis. Bioinformatics. 2000 Dec;16(12):1157–1158. doi: 10.1093/bioinformatics/16.12.1157. [DOI] [PubMed] [Google Scholar]
  38. Song W. Y., Pi L. Y., Wang G. L., Gardner J., Holsten T., Ronald P. C. Evolution of the rice Xa21 disease resistance gene family. Plant Cell. 1997 Aug;9(8):1279–1287. doi: 10.1105/tpc.9.8.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang Z. X., Yano M., Yamanouchi U., Iwamoto M., Monna L., Hayasaka H., Katayose Y., Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J. 1999 Jul;19(1):55–64. doi: 10.1046/j.1365-313x.1999.00498.x. [DOI] [PubMed] [Google Scholar]
  40. Warren R. F., Henk A., Mowery P., Holub E., Innes R. W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell. 1998 Sep;10(9):1439–1452. doi: 10.1105/tpc.10.9.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wei F., Gobelman-Werner K., Morroll S. M., Kurth J., Mao L., Wing R., Leister D., Schulze-Lefert P., Wise R. P. The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics. 1999 Dec;153(4):1929–1948. doi: 10.1093/genetics/153.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wei Fusheng, Wing Rod A., Wise Roger P. Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell. 2002 Aug;14(8):1903–1917. doi: 10.1105/tpc.002238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xiao S., Ellwood S., Calis O., Patrick E., Li T., Coleman M., Turner J. G. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science. 2001 Jan 5;291(5501):118–120. doi: 10.1126/science.291.5501.118. [DOI] [PubMed] [Google Scholar]
  44. Yap K. L., Ames J. B., Swindells M. B., Ikura M. Diversity of conformational states and changes within the EF-hand protein superfamily. Proteins. 1999 Nov 15;37(3):499–507. doi: 10.1002/(sici)1097-0134(19991115)37:3<499::aid-prot17>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  45. Yoshimura S., Yamanouchi U., Katayose Y., Toki S., Wang Z. X., Kono I., Kurata N., Yano M., Iwata N., Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1663–1668. doi: 10.1073/pnas.95.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van der Biezen E. A., Jones J. D. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol. 1998 Mar 26;8(7):R226–R227. doi: 10.1016/s0960-9822(98)70145-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES