Skip to main content
Genetics logoLink to Genetics
. 2002 Dec;162(4):1545–1556. doi: 10.1093/genetics/162.4.1545

A defect of Kap104 alleviates the requirement of mitotic exit network gene functions in Saccharomyces cerevisiae.

Kazuhide Asakawa 1, Akio Toh-e 1
PMCID: PMC1462384  PMID: 12524331

Abstract

A subgroup of the karyopherin beta (also called importin beta) protein that includes budding yeast Kap104 and human transportin/karyopherin beta2 is reported to function as a receptor for the transport of mRNA-binding proteins into the nucleus. We identified KAP104 as a responsible gene for a suppressor mutation of cdc15-2. We found that the kap104-E604K mutation suppressed the temperature-sensitive growth of cdc15-2 cells by promoting the exit from mitosis and suppressed the temperature sensitivity of various mitotic-exit mutations. The cytokinesis defect of these mitotic-exit mutants was not suppressed by kap104-E604K. Furthermore, the kap104-E604K mutation delays entry into DNA synthesis even at a permissive temperature. In cdc15-2 kap104-E604K cells, SWI5 and SIC1, but not CDH1, became essential at a high temperature, suggesting that the kap104-E604K mutation promotes mitotic exit via the Swi5-Sic1 pathway. Interestingly, SPO12, which is involved in the release of Cdc14 from the nucleolus during early anaphase, also became essential in cdc15-2 kap104-E604K cells at a high temperature. The kap104-E604K mutation caused a partial delocalization of Cdc14 from the nucleolus during interphase. This delocalization of Cdc14 was suppressed by the deletion of SPO12. These results suggest that a mutation in Kap104 stimulates exit from mitosis through the activation of Cdc14 and implies a novel role for Kap104 in cell-cycle progression in budding yeast.

Full Text

The Full Text of this article is available as a PDF (530.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitchison J. D., Blobel G., Rout M. P. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science. 1996 Oct 25;274(5287):624–627. doi: 10.1126/science.274.5287.624. [DOI] [PubMed] [Google Scholar]
  2. Asakawa K., Yoshida S., Otake F., Toh-e A. A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae. Genetics. 2001 Apr;157(4):1437–1450. doi: 10.1093/genetics/157.4.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bardin A. J., Amon A. Men and sin: what's the difference? Nat Rev Mol Cell Biol. 2001 Nov;2(11):815–826. doi: 10.1038/35099020. [DOI] [PubMed] [Google Scholar]
  4. Bonifaci N., Moroianu J., Radu A., Blobel G. Karyopherin beta2 mediates nuclear import of a mRNA binding protein. Proc Natl Acad Sci U S A. 1997 May 13;94(10):5055–5060. doi: 10.1073/pnas.94.10.5055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bäumer M., Künzler M., Steigemann P., Braus G. H., Irniger S. Yeast Ran-binding protein Yrb1p is required for efficient proteolysis of cell cycle regulatory proteins Pds1p and Sic1p. J Biol Chem. 2000 Dec 8;275(49):38929–38937. doi: 10.1074/jbc.M007925200. [DOI] [PubMed] [Google Scholar]
  6. Chaves S. R., Blobel G. Nuclear import of Spo12p, a protein essential for meiosis. J Biol Chem. 2001 Mar 9;276(21):17712–17717. doi: 10.1074/jbc.M010760200. [DOI] [PubMed] [Google Scholar]
  7. Coutavas E., Ren M., Oppenheim J. D., D'Eustachio P., Rush M. G. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature. 1993 Dec 9;366(6455):585–587. doi: 10.1038/366585a0. [DOI] [PubMed] [Google Scholar]
  8. Entian K. D., Schuster T., Hegemann J. H., Becher D., Feldmann H., Güldener U., Götz R., Hansen M., Hollenberg C. P., Jansen G. Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach. Mol Gen Genet. 1999 Dec;262(4-5):683–702. doi: 10.1007/pl00013817. [DOI] [PubMed] [Google Scholar]
  9. Gruss O. J., Carazo-Salas R. E., Schatz C. A., Guarguaglini G., Kast J., Wilm M., Le Bot N., Vernos I., Karsenti E., Mattaj I. W. Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell. 2001 Jan 12;104(1):83–93. doi: 10.1016/s0092-8674(01)00193-3. [DOI] [PubMed] [Google Scholar]
  10. Hood J. K., Silver P. A. Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae. J Biol Chem. 1998 Dec 25;273(52):35142–35146. doi: 10.1074/jbc.273.52.35142. [DOI] [PubMed] [Google Scholar]
  11. Ito H., Fukuda Y., Murata K., Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983 Jan;153(1):163–168. doi: 10.1128/jb.153.1.163-168.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaspersen S. L., Charles J. F., Morgan D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol. 1999 Mar 11;9(5):227–236. doi: 10.1016/s0960-9822(99)80111-0. [DOI] [PubMed] [Google Scholar]
  13. Jaspersen S. L., Morgan D. O. Cdc14 activates cdc15 to promote mitotic exit in budding yeast. Curr Biol. 2000 May 18;10(10):615–618. doi: 10.1016/s0960-9822(00)00491-7. [DOI] [PubMed] [Google Scholar]
  14. Knapp D., Bhoite L., Stillman D. J., Nasmyth K. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol. 1996 Oct;16(10):5701–5707. doi: 10.1128/mcb.16.10.5701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee S. E., Frenz L. M., Wells N. J., Johnson A. L., Johnston L. H. Order of function of the budding-yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5. Curr Biol. 2001 May 15;11(10):784–788. doi: 10.1016/s0960-9822(01)00228-7. [DOI] [PubMed] [Google Scholar]
  16. Mah A. S., Jang J., Deshaies R. J. Protein kinase Cdc15 activates the Dbf2-Mob1 kinase complex. Proc Natl Acad Sci U S A. 2001 Jun 12;98(13):7325–7330. doi: 10.1073/pnas.141098998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moll T., Tebb G., Surana U., Robitsch H., Nasmyth K. The role of phosphorylation and the CDC28 protein kinase in cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell. 1991 Aug 23;66(4):743–758. doi: 10.1016/0092-8674(91)90118-i. [DOI] [PubMed] [Google Scholar]
  18. Nachury M. V., Maresca T. J., Salmon W. C., Waterman-Storer C. M., Heald R., Weis K. Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell. 2001 Jan 12;104(1):95–106. doi: 10.1016/s0092-8674(01)00194-5. [DOI] [PubMed] [Google Scholar]
  19. Nasmyth K., Adolf G., Lydall D., Seddon A. The identification of a second cell cycle control on the HO promoter in yeast: cell cycle regulation of SW15 nuclear entry. Cell. 1990 Aug 24;62(4):631–647. doi: 10.1016/0092-8674(90)90110-z. [DOI] [PubMed] [Google Scholar]
  20. Ouspenski I. I. A RanBP1 mutation which does not visibly affect nuclear import may reveal additional functions of the ran GTPase system. Exp Cell Res. 1998 Oct 10;244(1):171–183. doi: 10.1006/excr.1998.4174. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sazer S., Dasso M. The ran decathlon: multiple roles of Ran. J Cell Sci. 2000 Apr;113(Pt 7):1111–1118. doi: 10.1242/jcs.113.7.1111. [DOI] [PubMed] [Google Scholar]
  23. Schroeder A. J., Chen X. H., Xiao Z., Fitzgerald-Hayes M. Genetic evidence for interactions between yeast importin alpha (Srp1p) and its nuclear export receptor, Cse1p. Mol Gen Genet. 1999 Jun;261(4-5):788–795. doi: 10.1007/s004380050022. [DOI] [PubMed] [Google Scholar]
  24. Shou W., Seol J. H., Shevchenko A., Baskerville C., Moazed D., Chen Z. W., Jang J., Shevchenko A., Charbonneau H., Deshaies R. J. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell. 1999 Apr 16;97(2):233–244. doi: 10.1016/s0092-8674(00)80733-3. [DOI] [PubMed] [Google Scholar]
  25. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Siomi M. C., Eder P. S., Kataoka N., Wan L., Liu Q., Dreyfuss G. Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins. J Cell Biol. 1997 Sep 22;138(6):1181–1192. doi: 10.1083/jcb.138.6.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stegmeier Frank, Visintin Rosella, Amon Angelika. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell. 2002 Jan 25;108(2):207–220. doi: 10.1016/s0092-8674(02)00618-9. [DOI] [PubMed] [Google Scholar]
  28. Toyn J. H., Johnson A. L., Donovan J. D., Toone W. M., Johnston L. H. The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics. 1997 Jan;145(1):85–96. doi: 10.1093/genetics/145.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Visintin R., Craig K., Hwang E. S., Prinz S., Tyers M., Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol Cell. 1998 Dec;2(6):709–718. doi: 10.1016/s1097-2765(00)80286-5. [DOI] [PubMed] [Google Scholar]
  30. Visintin R., Hwang E. S., Amon A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature. 1999 Apr 29;398(6730):818–823. doi: 10.1038/19775. [DOI] [PubMed] [Google Scholar]
  31. Wiese C., Wilde A., Moore M. S., Adam S. A., Merdes A., Zheng Y. Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science. 2001 Jan 26;291(5504):653–656. doi: 10.1126/science.1057661. [DOI] [PubMed] [Google Scholar]
  32. Xiao Z., McGrew J. T., Schroeder A. J., Fitzgerald-Hayes M. CSE1 and CSE2, two new genes required for accurate mitotic chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Aug;13(8):4691–4702. doi: 10.1128/mcb.13.8.4691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yoshida Satoshi, Asakawa Kazuhide, Toh-e Akio. Mitotic exit network controls the localization of Cdc14 to the spindle pole body in Saccharomyces cerevisiae. Curr Biol. 2002 Jun 4;12(11):944–950. doi: 10.1016/s0960-9822(02)00870-9. [DOI] [PubMed] [Google Scholar]
  34. Zachariae W., Schwab M., Nasmyth K., Seufert W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science. 1998 Nov 27;282(5394):1721–1724. doi: 10.1126/science.282.5394.1721. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES