Abstract
Polymorphisms in an ancestral population can cause conflicts between gene trees and the species tree. Such conflicts can be used to estimate ancestral population sizes when data from multiple loci are available. In this article I extend previous work for estimating ancestral population sizes to analyze sequence data from three species under a finite-site nucleotide substitution model. Both maximum-likelihood (ML) and Bayes methods are implemented for joint estimation of the two speciation dates and the two population size parameters. Both methods account for uncertainties in the gene tree due to few informative sites at each locus and make an efficient use of information in the data. The Bayes algorithm using Markov chain Monte Carlo (MCMC) enjoys a computational advantage over ML and also provides a framework for incorporating prior information about the parameters. The methods are applied to a data set of 53 nuclear noncoding contigs from human, chimpanzee, and gorilla published by Chen and Li. Estimates of the effective population size for the common ancestor of humans and chimpanzees by both ML and Bayes methods are approximately 12,000-21,000, comparable to estimates for modern humans, and do not support the notion of a dramatic size reduction in early human populations. Estimates published previously from the same data are several times larger and appear to be biased due to methodological deficiency. The divergence between humans and chimpanzees is dated at approximately 5.2 million years ago and the gorilla divergence 1.1-1.7 million years earlier. The analysis suggests that typical data sets contain useful information about the ancestral population sizes and that it is advantageous to analyze data of several species simultaneously.
Full Text
The Full Text of this article is available as a PDF (290.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen F. C., Li W. H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am J Hum Genet. 2001 Jan 15;68(2):444–456. doi: 10.1086/318206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards S. V., Beerli P. Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution. 2000 Dec;54(6):1839–1854. doi: 10.1111/j.0014-3820.2000.tb01231.x. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Hacia J. G. Genome of the apes. Trends Genet. 2001 Nov;17(11):637–645. doi: 10.1016/s0168-9525(01)02494-5. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22(2):160–174. doi: 10.1007/BF02101694. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Kishino H., Yano T. Man's place in Hominoidea as inferred from molecular clocks of DNA. J Mol Evol. 1987;26(1-2):132–147. doi: 10.1007/BF02111287. [DOI] [PubMed] [Google Scholar]
- Hudson R. R. Gene trees, species trees and the segregation of ancestral alleles. Genetics. 1992 Jun;131(2):509–513. doi: 10.1093/genetics/131.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaessmann H., Wiebe V., Weiss G., Päbo S. Great ape DNA sequences reveal a reduced diversity and an expansion in humans. Nat Genet. 2001 Feb;27(2):155–156. doi: 10.1038/84773. [DOI] [PubMed] [Google Scholar]
- Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. doi: 10.1038/304412a0. [DOI] [PubMed] [Google Scholar]
- Kumar S., Hedges S. B. A molecular timescale for vertebrate evolution. Nature. 1998 Apr 30;392(6679):917–920. doi: 10.1038/31927. [DOI] [PubMed] [Google Scholar]
- Liò P., Goldman N. Models of molecular evolution and phylogeny. Genome Res. 1998 Dec;8(12):1233–1244. doi: 10.1101/gr.8.12.1233. [DOI] [PubMed] [Google Scholar]
- Nachman M. W., Crowell S. L. Estimate of the mutation rate per nucleotide in humans. Genetics. 2000 Sep;156(1):297–304. doi: 10.1093/genetics/156.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruvolo M. Molecular phylogeny of the hominoids: inferences from multiple independent DNA sequence data sets. Mol Biol Evol. 1997 Mar;14(3):248–265. doi: 10.1093/oxfordjournals.molbev.a025761. [DOI] [PubMed] [Google Scholar]
- Saitou N. Property and efficiency of the maximum likelihood method for molecular phylogeny. J Mol Evol. 1988;27(3):261–273. doi: 10.1007/BF02100082. [DOI] [PubMed] [Google Scholar]
- Satta Y., Klein J., Takahata N. DNA archives and our nearest relative: the trichotomy problem revisited. Mol Phylogenet Evol. 2000 Feb;14(2):259–275. doi: 10.1006/mpev.2000.0704. [DOI] [PubMed] [Google Scholar]
- Takahata N. An attempt to estimate the effective size of the ancestral species common to two extant species from which homologous genes are sequenced. Genet Res. 1986 Dec;48(3):187–190. doi: 10.1017/s001667230002499x. [DOI] [PubMed] [Google Scholar]
- Takahata N., Satta Y., Klein J. Divergence time and population size in the lineage leading to modern humans. Theor Popul Biol. 1995 Oct;48(2):198–221. doi: 10.1006/tpbi.1995.1026. [DOI] [PubMed] [Google Scholar]
- Wu C. I. Inferences of species phylogeny in relation to segregation of ancient polymorphisms. Genetics. 1991 Feb;127(2):429–435. doi: 10.1093/genetics/127.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang Z. On the estimation of ancestral population sizes of modern humans. Genet Res. 1997 Apr;69(2):111–116. doi: 10.1017/s001667239700270x. [DOI] [PubMed] [Google Scholar]
- Yoder A. D., Yang Z. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol. 2000 Jul;17(7):1081–1090. doi: 10.1093/oxfordjournals.molbev.a026389. [DOI] [PubMed] [Google Scholar]