Abstract
Genomic manipulations using site-specific recombinases rely on their applied characteristics in living systems. To understand their applied properties so that they can be optimally deployed, we compared the recombinases FLP and Cre in two assays. In both Escherichia coli and in vitro, FLP shows a different temperature optimum than Cre. FLP is more thermolabile, having an optimum near 30 degrees C and little detectable activity above 39 degrees C. Cre is optimally efficient at 37 degrees C and above. Consistent with FLP thermolability, recombination in a mammalian cell line mediated by a ligand- regulated FLP-androgen receptor fusion protein is more efficient at 35 degrees C than at higher temperatures. We also document a mutation in a commercially available FLP plasmid (FLP-F70L) which renders this recombinase even more thermolabile. The different temperature optima of FLP, FLP-F70L and Cre influence their strategies of usage. Our results recommend the use of Cre for applications in mice that require efficient recombination. The thermolabilities of FLP and FLP-F70L can be usefully exploited for gain of function and cell culture applications.
Full Text
The Full Text of this article is available as a PDF (170.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. E., Bliska J. B., Cozzarelli N. R. Cre-lox recombination in Escherichia coli cells. Mechanistic differences from the in vitro reaction. J Mol Biol. 1992 Aug 5;226(3):661–673. doi: 10.1016/0022-2836(92)90623-r. [DOI] [PubMed] [Google Scholar]
- Buchholz F., Angrand P. O., Stewart A. F. A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. Nucleic Acids Res. 1996 Aug 1;24(15):3118–3119. doi: 10.1093/nar/24.15.3118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friesen H., Sadowski P. D. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation. J Mol Biol. 1992 May 20;225(2):313–326. doi: 10.1016/0022-2836(92)90924-9. [DOI] [PubMed] [Google Scholar]
- Gates C. A., Cox M. M. FLP recombinase is an enzyme. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4628–4632. doi: 10.1073/pnas.85.13.4628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golic K. G., Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell. 1989 Nov 3;59(3):499–509. doi: 10.1016/0092-8674(89)90033-0. [DOI] [PubMed] [Google Scholar]
- Govind N. S., Jayaram M. Rapid localization and characterization of random mutations within the 2 micron circle site-specific recombinase: a general strategy for analysis of protein function. Gene. 1987;51(1):31–41. doi: 10.1016/0378-1119(87)90471-9. [DOI] [PubMed] [Google Scholar]
- Gu H., Marth J. D., Orban P. C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science. 1994 Jul 1;265(5168):103–106. doi: 10.1126/science.8016642. [DOI] [PubMed] [Google Scholar]
- Gu H., Zou Y. R., Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell. 1993 Jun 18;73(6):1155–1164. doi: 10.1016/0092-8674(93)90644-6. [DOI] [PubMed] [Google Scholar]
- Guzman L. M., Belin D., Carson M. J., Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995 Jul;177(14):4121–4130. doi: 10.1128/jb.177.14.4121-4130.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrandt E. R., Cozzarelli N. R. Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell. 1995 May 5;81(3):331–340. doi: 10.1016/0092-8674(95)90386-0. [DOI] [PubMed] [Google Scholar]
- Huang L. C., Wood E. A., Cox M. M. A bacterial model system for chromosomal targeting. Nucleic Acids Res. 1991 Feb 11;19(3):443–448. doi: 10.1093/nar/19.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellendonk C., Tronche F., Monaghan A. P., Angrand P. O., Stewart F., Schütz G. Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. 1996 Apr 15;24(8):1404–1411. doi: 10.1093/nar/24.8.1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilby N. J., Snaith M. R., Murray J. A. Site-specific recombinases: tools for genome engineering. Trends Genet. 1993 Dec;9(12):413–421. doi: 10.1016/0168-9525(93)90104-p. [DOI] [PubMed] [Google Scholar]
- Kühn R., Schwenk F., Aguet M., Rajewsky K. Inducible gene targeting in mice. Science. 1995 Sep 8;269(5229):1427–1429. doi: 10.1126/science.7660125. [DOI] [PubMed] [Google Scholar]
- LANDMAN O. E., BAUSUM H. T., MATNEY T. S. Temperaturegradient plates for growth of microorganisms. J Bacteriol. 1962 Mar;83:463–469. doi: 10.1128/jb.83.3.463-469.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakso M., Sauer B., Mosinger B., Jr, Lee E. J., Manning R. W., Yu S. H., Mulder K. L., Westphal H. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6232–6236. doi: 10.1073/pnas.89.14.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leplatois P., Danchin A. Vectors for high conditional expression of cloned genes. Biochimie. 1983 Jun;65(6):317–324. doi: 10.1016/s0300-9084(83)80153-9. [DOI] [PubMed] [Google Scholar]
- Lerner C. G., Inouye M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res. 1990 Aug 11;18(15):4631–4631. doi: 10.1093/nar/18.15.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Logie C., Stewart A. F. Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5940–5944. doi: 10.1073/pnas.92.13.5940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyznik L. A., Hirayama L., Rao K. V., Abad A., Hodges T. K. Heat-inducible expression of FLP gene in maize cells. Plant J. 1995 Aug;8(2):177–186. doi: 10.1046/j.1365-313x.1995.08020177.x. [DOI] [PubMed] [Google Scholar]
- Odell J., Caimi P., Sauer B., Russell S. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet. 1990 Sep;223(3):369–378. doi: 10.1007/BF00264442. [DOI] [PubMed] [Google Scholar]
- Pichel J. G., Lakso M., Westphal H. Timing of SV40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine lens development. Oncogene. 1993 Dec;8(12):3333–3342. [PubMed] [Google Scholar]
- Roder J., Hickey W. F. Mouse models, immunology, multiple sclerosis and myelination. Nat Genet. 1996 Jan;12(1):6–8. doi: 10.1038/ng0196-6. [DOI] [PubMed] [Google Scholar]
- Rossant J., Nagy A. Genome engineering: the new mouse genetics. Nat Med. 1995 Jun;1(6):592–594. doi: 10.1038/nm0695-592. [DOI] [PubMed] [Google Scholar]
- Rossi F., McNagny K. M., Logie C., Stewart A. F., Graf T. Excision of Ets by an inducible site-specific recombinase causes differentiation of Myb-Ets-transformed hematopoietic progenitors. Curr Biol. 1996 Jul 1;6(7):866–872. doi: 10.1016/s0960-9822(02)00610-3. [DOI] [PubMed] [Google Scholar]
- Sauer B. Site-specific recombination: developments and applications. Curr Opin Biotechnol. 1994 Oct;5(5):521–527. doi: 10.1016/0958-1669(94)90068-x. [DOI] [PubMed] [Google Scholar]
- Stark W. M., Boocock M. R. Gatecrashers at the catalytic party. Trends Genet. 1995 Apr;11(4):121–123. doi: 10.1016/s0168-9525(00)89016-2. [DOI] [PubMed] [Google Scholar]
- Stark W. M., Boocock M. R., Sherratt D. J. Catalysis by site-specific recombinases. Trends Genet. 1992 Dec;8(12):432–439. [PubMed] [Google Scholar]