Abstract
The population-genetic consequences of population structure are of great interest and have been studied extensively. An area of particular interest is the interaction among population structure, natural selection, and genetic drift. At first glance, different results in this area give very different impressions of the effect of population subdivision on effective population size (N(e)), suggesting that no single value of N(e) can completely characterize a structured population. Results presented here show that a population conforming to Wright's island model of subdivision with genic selection can be related to an idealized panmictic population (a Wright-Fisher population). This equivalent panmictic population has a larger size than the actual population; i.e., N(e) is larger than the actual population size, as expected from many results for this type of population structure. The selection coefficient in the equivalent panmictic population, referred to here as the effective selection coefficient (s(e)), is smaller than the actual selection coefficient (s). This explains how the fixation probability of a selected allele can be unaffected by population subdivision despite the fact that subdivision increases N(e), for the product N(e)s(e) is not altered by subdivision.
Full Text
The Full Text of this article is available as a PDF (108.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
- Chesser R. K., Rhodes O. E., Jr, Sugg D. W., Schnabel A. Effective sizes for subdivided populations. Genetics. 1993 Dec;135(4):1221–1232. doi: 10.1093/genetics/135.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dobzhansky T, Wright S. Genetics of Natural Populations. V. Relations between Mutation Rate and Accumulation of Lethals in Populations of Drosophila Pseudoobscura. Genetics. 1941 Jan;26(1):23–51. doi: 10.1093/genetics/26.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gregorius H. R. On the concept of effective number. Theor Popul Biol. 1991 Oct;40(2):269–283. doi: 10.1016/0040-5809(91)90056-l. [DOI] [PubMed] [Google Scholar]
- KIMURA M. Stochastic processes and distribution of gene frequencies under natural selection. Cold Spring Harb Symp Quant Biol. 1955;20:33–53. doi: 10.1101/sqb.1955.020.01.006. [DOI] [PubMed] [Google Scholar]
- Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kimura M. SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTINUOUS MODEL. Proc Natl Acad Sci U S A. 1955 Mar 15;41(3):144–150. doi: 10.1073/pnas.41.3.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T. A simple proof that certain quantities are independent of the geographical structure of population. Theor Popul Biol. 1974 Apr;5(2):148–154. doi: 10.1016/0040-5809(74)90037-9. [DOI] [PubMed] [Google Scholar]
- Maruyama T. Distribution of gene frequencies in a geographically structured finite population. I. Distribution of neutral genes and of genes with small efect. Ann Hum Genet. 1972 Apr;35(4):411–423. [PubMed] [Google Scholar]
- Maruyama T. Distribution of gene frequencies in a geographically structured population. 3. Distribution of deleterious genes and genetic correlation between different localities. Ann Hum Genet. 1972 Jul;36(1):99–108. doi: 10.1111/j.1469-1809.1972.tb00585.x. [DOI] [PubMed] [Google Scholar]
- Maruyama T. Distribution of gene frequencies in a geographically structured population. II. Distribution of deleterious genes and of lethal genes. Ann Hum Genet. 1972 Apr;35(4):425–432. doi: 10.1111/j.1469-1809.1957.tb01867.x. [DOI] [PubMed] [Google Scholar]
- Maruyama T. Effective number of alleles in a subdivided population. Theor Popul Biol. 1970 Nov;1(3):273–306. doi: 10.1016/0040-5809(70)90047-x. [DOI] [PubMed] [Google Scholar]
- Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T. On the fixation probability of mutant genes in a subdivided population. Genet Res. 1970 Apr;15(2):221–225. doi: 10.1017/s0016672300001543. [DOI] [PubMed] [Google Scholar]
- Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J Mol Evol. 1993 Sep;37(3):240–244. doi: 10.1007/BF00175500. [DOI] [PubMed] [Google Scholar]
- Nordborg M. Structured coalescent processes on different time scales. Genetics. 1997 Aug;146(4):1501–1514. doi: 10.1093/genetics/146.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rannala B. The Sampling Theory of Neutral Alleles in an Island Population of Fluctuating Size. Theor Popul Biol. 1996 Aug;50(1):91–104. doi: 10.1006/tpbi.1996.0024. [DOI] [PubMed] [Google Scholar]
- Santiago E., Caballero A. Effective size of populations under selection. Genetics. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slatkin M. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol. 1977 Dec;12(3):253–262. doi: 10.1016/0040-5809(77)90045-4. [DOI] [PubMed] [Google Scholar]
- Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991 Oct;58(2):167–175. doi: 10.1017/s0016672300029827. [DOI] [PubMed] [Google Scholar]
- Takahata N. Genealogy of neutral genes and spreading of selected mutations in a geographically structured population. Genetics. 1991 Oct;129(2):585–595. doi: 10.1093/genetics/129.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitlock M. C., Barton N. H. The effective size of a subdivided population. Genetics. 1997 May;146(1):427–441. doi: 10.1093/genetics/146.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]