Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):429–446. doi: 10.1093/genetics/163.1.429

Estimating effective population size and migration rates from genetic samples over space and time.

Jinliang Wang 1, Michael C Whitlock 1
PMCID: PMC1462406  PMID: 12586728

Abstract

In the past, moment and likelihood methods have been developed to estimate the effective population size (N(e)) on the basis of the observed changes of marker allele frequencies over time, and these have been applied to a large variety of species and populations. Such methods invariably make the critical assumption of a single isolated population receiving no immigrants over the study interval. For most populations in the real world, however, migration is not negligible and can substantially bias estimates of N(e) if it is not accounted for. Here we extend previous moment and maximum-likelihood methods to allow the joint estimation of N(e) and migration rate (m) using genetic samples over space and time. It is shown that, compared to genetic drift acting alone, migration results in changes in allele frequency that are greater in the short term and smaller in the long term, leading to under- and overestimation of N(e), respectively, if it is ignored. Extensive simulations are run to evaluate the newly developed moment and likelihood methods, which yield generally satisfactory estimates of both N(e) and m for populations with widely different effective sizes and migration rates and patterns, given a reasonably large sample size and number of markers.

Full Text

The Full Text of this article is available as a PDF (207.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. C., Williamson E. G., Thompson E. A. Monte Carlo evaluation of the likelihood for N(e) from temporally spaced samples. Genetics. 2000 Dec;156(4):2109–2118. doi: 10.1093/genetics/156.4.2109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaumont M. A. Detecting population expansion and decline using microsatellites. Genetics. 1999 Dec;153(4):2013–2029. doi: 10.1093/genetics/153.4.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beerli P., Felsenstein J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci U S A. 2001 Apr 3;98(8):4563–4568. doi: 10.1073/pnas.081068098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caballero A. Developments in the prediction of effective population size. Heredity (Edinb) 1994 Dec;73(Pt 6):657–679. doi: 10.1038/hdy.1994.174. [DOI] [PubMed] [Google Scholar]
  5. Funk W. C., Tallmon D. A., Allendorf F. W. Small effective population size in the long-toed salamander. Mol Ecol. 1999 Oct;8(10):1633–1640. doi: 10.1046/j.1365-294x.1999.00748.x. [DOI] [PubMed] [Google Scholar]
  6. International Psoriasis Genetics Consortium The International Psoriasis Genetics Study: assessing linkage to 14 candidate susceptibility loci in a cohort of 942 affected sib pairs. Am J Hum Genet. 2003 Jul 7;73(2):430–437. doi: 10.1086/377159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jehle R., Arntzen J. W., Burke T., Krupa A. P., Hödl W. The annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus). Mol Ecol. 2001 Apr;10(4):839–850. doi: 10.1046/j.1365-294x.2001.01237.x. [DOI] [PubMed] [Google Scholar]
  8. Jehle R., Arntzen J. W., Burke T., Krupa A. P., Hödl W. The annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus). Mol Ecol. 2001 Apr;10(4):839–850. doi: 10.1046/j.1365-294x.2001.01237.x. [DOI] [PubMed] [Google Scholar]
  9. Kantanen J., Olsaker I., Adalsteinsson S., Sandberg K., Eythorsdottir E., Pirhonen K., Holm L. E. Temporal changes in genetic variation of north European cattle breeds. Anim Genet. 1999 Feb;30(1):16–27. doi: 10.1046/j.1365-2052.1999.00379.x. [DOI] [PubMed] [Google Scholar]
  10. Luikart G., Cornuet J. M. Estimating the effective number of breeders from heterozygote excess in progeny. Genetics. 1999 Mar;151(3):1211–1216. doi: 10.1093/genetics/151.3.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nei M., Tajima F. Genetic drift and estimation of effective population size. Genetics. 1981 Jul;98(3):625–640. doi: 10.1093/genetics/98.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nielsen R., Wakeley J. Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics. 2001 Jun;158(2):885–896. doi: 10.1093/genetics/158.2.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pamilo P., Varvio-Aho S. L. On the estimation of population size from allele frequency changes. Genetics. 1980 Aug;95(4):1055–1057. doi: 10.1093/genetics/95.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pudovkin A. I., Zaykin D. V., Hedgecock D. On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics. 1996 Sep;144(1):383–387. doi: 10.1093/genetics/144.1.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rannala B., Mountain J. L. Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9197–9201. doi: 10.1073/pnas.94.17.9197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tajima F., Nei M. Note on genetic drift and estimation of effective population size. Genetics. 1984 Mar;106(3):569–574. doi: 10.1093/genetics/106.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vitalis R., Couvet D. Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics. 2001 Feb;157(2):911–925. doi: 10.1093/genetics/157.2.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wang J. A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res. 2001 Dec;78(3):243–257. doi: 10.1017/s0016672301005286. [DOI] [PubMed] [Google Scholar]
  19. Wang J. Optimal marker-assisted selection to increase the effective size of small populations. Genetics. 2001 Feb;157(2):867–874. doi: 10.1093/genetics/157.2.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Whitlock M. C., McCauley D. E. Indirect measures of gene flow and migration: FST not equal to 1/(4Nm + 1). Heredity (Edinb) 1999 Feb;82(Pt 2):117–125. doi: 10.1038/sj.hdy.6884960. [DOI] [PubMed] [Google Scholar]
  21. Williamson E. G., Slatkin M. Using maximum likelihood to estimate population size from temporal changes in allele frequencies. Genetics. 1999 Jun;152(2):755–761. doi: 10.1093/genetics/152.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES