Abstract
We herein report on our efforts to improve the mapping resolution of a QTL with major effect on milk yield and composition that was previously mapped to bovine chromosome 20. By using a denser chromosome 20 marker map and by exploiting linkage disequilibrium using two distinct approaches, we provide strong evidence that a chromosome segment including the gene coding for the growth hormone receptor accounts for at least part of the chromosome 20 QTL effect. By sequencing individuals with known QTL genotype, we identify an F to Y substitution in the transmembrane domain of the growth hormone receptor gene that is associated with a strong effect on milk yield and composition in the general population.
Full Text
The Full Text of this article is available as a PDF (470.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersson L. Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet. 2001 Feb;2(2):130–138. doi: 10.1038/35052563. [DOI] [PubMed] [Google Scholar]
- Arranz J. J., Coppieters W., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Mezer C., Riquet J. A QTL affecting milk yield and composition maps to bovine chromosome 20: a confirmation. Anim Genet. 1998 Apr;29(2):107–115. doi: 10.1046/j.1365-2052.1998.00307.x. [DOI] [PubMed] [Google Scholar]
- Bauman D. E., Everett R. W., Weiland W. H., Collier R. J. Production responses to bovine somatotropin in northeast dairy herds. J Dairy Sci. 1999 Dec;82(12):2564–2573. doi: 10.3168/jds.S0022-0302(99)75511-6. [DOI] [PubMed] [Google Scholar]
- Charlier C., Farnir F., Berzi P., Vanmanshoven P., Brouwers B., Vromans H., Georges M. Identity-by-descent mapping of recessive traits in livestock: application to map the bovine syndactyly locus to chromosome 15. Genome Res. 1996 Jul;6(7):580–589. doi: 10.1101/gr.6.7.580. [DOI] [PubMed] [Google Scholar]
- Churchill G. A., Doerge R. W. Empirical threshold values for quantitative trait mapping. Genetics. 1994 Nov;138(3):963–971. doi: 10.1093/genetics/138.3.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coppieters W., Riquet J., Arranz J. J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Nezer C. A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm Genome. 1998 Jul;9(7):540–544. doi: 10.1007/s003359900815. [DOI] [PubMed] [Google Scholar]
- Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet. 1998 Jan;18(1):19–24. doi: 10.1038/ng0198-19. [DOI] [PubMed] [Google Scholar]
- Farnir F., Coppieters W., Arranz J. J., Berzi P., Cambisano N., Grisart B., Karim L., Marcq F., Moreau L., Mni M. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 2000 Feb;10(2):220–227. doi: 10.1101/gr.10.2.220. [DOI] [PubMed] [Google Scholar]
- Farnir Frédéric, Grisart Bernard, Coppieters Wouter, Riquet Juliette, Berzi Paulette, Cambisano Nadine, Karim Latifa, Mni Myriam, Moisio Sirja, Simon Patricia. Simultaneous mining of linkage and linkage disequilibrium to fine map quantitative trait loci in outbred half-sib pedigrees: revisiting the location of a quantitative trait locus with major effect on milk production on bovine chromosome 14. Genetics. 2002 May;161(1):275–287. doi: 10.1093/genetics/161.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint J., Mott R. Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet. 2001 Jun;2(6):437–445. doi: 10.1038/35076585. [DOI] [PubMed] [Google Scholar]
- Georges M., Nielsen D., Mackinnon M., Mishra A., Okimoto R., Pasquino A. T., Sargeant L. S., Sorensen A., Steele M. R., Zhao X. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics. 1995 Feb;139(2):907–920. doi: 10.1093/genetics/139.2.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Godowski P. J., Leung D. W., Meacham L. R., Galgani J. P., Hellmiss R., Keret R., Rotwein P. S., Parks J. S., Laron Z., Wood W. I. Characterization of the human growth hormone receptor gene and demonstration of a partial gene deletion in two patients with Laron-type dwarfism. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8083–8087. doi: 10.1073/pnas.86.20.8083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grisart Bernard, Coppieters Wouter, Farnir Frédéric, Karim Latifa, Ford Christine, Berzi Paulette, Cambisano Nadine, Mni Myriam, Reid Suzanne, Simon Patricia. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002 Feb;12(2):222–231. doi: 10.1101/gr.224202. [DOI] [PubMed] [Google Scholar]
- Hauser S. D., McGrath M. F., Collier R. J., Krivi G. G. Cloning and in vivo expression of bovine growth hormone receptor mRNA. Mol Cell Endocrinol. 1990 Sep 10;72(3):187–200. doi: 10.1016/0303-7207(90)90143-v. [DOI] [PubMed] [Google Scholar]
- Heap D., Lucy M. C., Collier R. J., Boyd C. K., Warren W. C. Rapid communication: nucleotide sequence of the promoter and first exon of the somatotropin receptor gene in cattle. J Anim Sci. 1995 May;73(5):1529–1529. doi: 10.2527/1995.7351529x. [DOI] [PubMed] [Google Scholar]
- Hudson R. R. The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics. 1985 Mar;109(3):611–631. doi: 10.1093/genetics/109.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kappes S. M., Keele J. W., Stone R. T., McGraw R. A., Sonstegard T. S., Smith T. P., Lopez-Corrales N. L., Beattie C. W. A second-generation linkage map of the bovine genome. Genome Res. 1997 Mar;7(3):235–249. doi: 10.1101/gr.7.3.235. [DOI] [PubMed] [Google Scholar]
- Karim L., Coppieters W., Grobet L., Valentini A., Georges M. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim Genet. 2000 Dec;31(6):396–399. doi: 10.1046/j.1365-2052.2000.00684.x. [DOI] [PubMed] [Google Scholar]
- Mauricio R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet. 2001 May;2(5):370–381. doi: 10.1038/35072085. [DOI] [PubMed] [Google Scholar]
- Meuwissen T. H., Goddard M. E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics. 2000 May;155(1):421–430. doi: 10.1093/genetics/155.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meuwissen T. H., Goddard M. E. Prediction of identity by descent probabilities from marker-haplotypes. Genet Sel Evol. 2001 Nov-Dec;33(6):605–634. doi: 10.1186/1297-9686-33-6-605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reich D. E., Cargill M., Bolk S., Ireland J., Sabeti P. C., Richter D. J., Lavery T., Kouyoumjian R., Farhadian S. F., Ward R. Linkage disequilibrium in the human genome. Nature. 2001 May 10;411(6834):199–204. doi: 10.1038/35075590. [DOI] [PubMed] [Google Scholar]
- Spelman R. J., Coppieters W., Karim L., van Arendonk J. A., Bovenhuis H. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics. 1996 Dec;144(4):1799–1808. doi: 10.1093/genetics/144.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
- Warren W., Smith T. P., Rexroad C. E., 3rd, Fahrenkrug S. C., Allison T., Shu C. L., Catanese J., de Jong P. J. Construction and characterization of a new bovine bacterial artificial chromosome library with 10 genome-equivalent coverage. Mamm Genome. 2000 Aug;11(8):662–663. doi: 10.1007/s003350010126. [DOI] [PubMed] [Google Scholar]