Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):9–20. doi: 10.1093/genetics/163.1.9

Genetic analysis of the interface between Cdc42p and the CRIB domain of Ste20p in Saccharomyces cerevisiae.

Josée Ash 1, Cunle Wu 1, Robert Larocque 1, Maleek Jamal 1, Willem Stevens 1, Mike Osborne 1, David Y Thomas 1, Malcolm Whiteway 1
PMCID: PMC1462410  PMID: 12586692

Abstract

Mutagenesis was used to probe the interface between the small GTPase Cdc42p and the CRIB domain motif of Ste20p. Members of a cluster of hydrophobic residues of Cdc42p were changed to alanine and/or arginine. The interaction of the wild-type and mutant proteins was measured using the two-hybrid assay; many, but not all, changes reduced interaction between Cdc42p and the target CRIB domain. Mutations in conserved residues in the CRIB domain were also tested for their importance in the association with Cdc42p. Two conserved CRIB domain histidines were changed to aspartic acid. These mutants reduced mating, as well as responsiveness to pheromone-induced gene expression and cell cycle arrest, but did not reduce in vitro the kinase activity of Ste20p. GFP-tagged mutant proteins were unable to localize to sites of polarized growth. In addition, these point mutants were synthetically lethal with disruption of CLA4 and blocked the Ste20p-Cdc42p two-hybrid interaction. Compensatory mutations in Cdc42p that reestablished the two-hybrid association with the mutant Ste20p CRIB domain baits were identified. These mutations improved the pheromone responsiveness of cells containing the CRIB mutations, but did not rescue the lethality associated with the CRIB mutant CLA4 deletion interaction. These results suggest that the Ste20p-Cdc42p interaction plays a direct role in Ste20p kinase function and that this interaction is required for efficient activity of the pheromone response pathway.

Full Text

The Full Text of this article is available as a PDF (500.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Manan N., Aghazadeh B., Liu G. A., Majumdar A., Ouerfelli O., Siminovitch K. A., Rosen M. K. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Nature. 1999 May 27;399(6734):379–383. doi: 10.1038/20726. [DOI] [PubMed] [Google Scholar]
  2. Adams A. E., Johnson D. I., Longnecker R. M., Sloat B. F., Pringle J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J Cell Biol. 1990 Jul;111(1):131–142. doi: 10.1083/jcb.111.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Best A., Ahmed S., Kozma R., Lim L. The Ras-related GTPase Rac1 binds tubulin. J Biol Chem. 1996 Feb 16;271(7):3756–3762. doi: 10.1074/jbc.271.7.3756. [DOI] [PubMed] [Google Scholar]
  4. Bishop A. L., Hall A. Rho GTPases and their effector proteins. Biochem J. 2000 Jun 1;348(Pt 2):241–255. [PMC free article] [PubMed] [Google Scholar]
  5. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  6. Burbelo P. D., Drechsel D., Hall A. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem. 1995 Dec 8;270(49):29071–29074. doi: 10.1074/jbc.270.49.29071. [DOI] [PubMed] [Google Scholar]
  7. Chant J. Generation of cell polarity in yeast. Curr Opin Cell Biol. 1996 Aug;8(4):557–565. doi: 10.1016/s0955-0674(96)80035-4. [DOI] [PubMed] [Google Scholar]
  8. Chien C. T., Bartel P. L., Sternglanz R., Fields S. The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9578–9582. doi: 10.1073/pnas.88.21.9578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Courchesne W. E., Kunisawa R., Thorner J. A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell. 1989 Sep 22;58(6):1107–1119. doi: 10.1016/0092-8674(89)90509-6. [DOI] [PubMed] [Google Scholar]
  10. Cvrcková F., De Virgilio C., Manser E., Pringle J. R., Nasmyth K. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 1995 Aug 1;9(15):1817–1830. doi: 10.1101/gad.9.15.1817. [DOI] [PubMed] [Google Scholar]
  11. Cvrcková F., Nasmyth K. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 1993 Dec 15;12(13):5277–5286. doi: 10.1002/j.1460-2075.1993.tb06223.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eby J. J., Holly S. P., van Drogen F., Grishin A. V., Peter M., Drubin D. G., Blumer K. J. Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr Biol. 1998 Aug 27;8(17):967–970. doi: 10.1016/s0960-9822(98)00398-4. [DOI] [PubMed] [Google Scholar]
  13. Emerson S. D., Madison V. S., Palermo R. E., Waugh D. S., Scheffler J. E., Tsao K. L., Kiefer S. E., Liu S. P., Fry D. C. Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry. 1995 May 30;34(21):6911–6918. doi: 10.1021/bi00021a001. [DOI] [PubMed] [Google Scholar]
  14. Evangelista M., Blundell K., Longtine M. S., Chow C. J., Adames N., Pringle J. R., Peter M., Boone C. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science. 1997 Apr 4;276(5309):118–122. doi: 10.1126/science.276.5309.118. [DOI] [PubMed] [Google Scholar]
  15. Gizachew D., Guo W., Chohan K. K., Sutcliffe M. J., Oswald R. E. Structure of the complex of Cdc42Hs with a peptide derived from P-21 activated kinase. Biochemistry. 2000 Apr 11;39(14):3963–3971. doi: 10.1021/bi992646d. [DOI] [PubMed] [Google Scholar]
  16. Guo W., Sutcliffe M. J., Cerione R. A., Oswald R. E. Identification of the binding surface on Cdc42Hs for p21-activated kinase. Biochemistry. 1998 Oct 6;37(40):14030–14037. doi: 10.1021/bi981352+. [DOI] [PubMed] [Google Scholar]
  17. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lamson Rachel E., Winters Matthew J., Pryciak Peter M. Cdc42 regulation of kinase activity and signaling by the yeast p21-activated kinase Ste20. Mol Cell Biol. 2002 May;22(9):2939–2951. doi: 10.1128/MCB.22.9.2939-2951.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leberer E., Dignard D., Harcus D., Hougan L., Whiteway M., Thomas D. Y. Cloning of Saccharomyces cerevisiae STE5 as a suppressor of a Ste20 protein kinase mutant: structural and functional similarity of Ste5 to Far1. Mol Gen Genet. 1993 Nov;241(3-4):241–254. doi: 10.1007/BF00284675. [DOI] [PubMed] [Google Scholar]
  20. Leberer E., Dignard D., Harcus D., Thomas D. Y., Whiteway M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 1992 Dec;11(13):4815–4824. doi: 10.1002/j.1460-2075.1992.tb05587.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Leberer E., Wu C., Leeuw T., Fourest-Lieuvin A., Segall J. E., Thomas D. Y. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J. 1997 Jan 2;16(1):83–97. doi: 10.1093/emboj/16.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Leeuw T., Wu C., Schrag J. D., Whiteway M., Thomas D. Y., Leberer E. Interaction of a G-protein beta-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature. 1998 Jan 8;391(6663):191–195. doi: 10.1038/34448. [DOI] [PubMed] [Google Scholar]
  23. Lei M., Lu W., Meng W., Parrini M. C., Eck M. J., Mayer B. J., Harrison S. C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell. 2000 Aug 4;102(3):387–397. doi: 10.1016/s0092-8674(00)00043-x. [DOI] [PubMed] [Google Scholar]
  24. Lin D., Edwards A. S., Fawcett J. P., Mbamalu G., Scott J. D., Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol. 2000 Aug;2(8):540–547. doi: 10.1038/35019582. [DOI] [PubMed] [Google Scholar]
  25. Manser E., Leung T., Salihuddin H., Zhao Z. S., Lim L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature. 1994 Jan 6;367(6458):40–46. doi: 10.1038/367040a0. [DOI] [PubMed] [Google Scholar]
  26. Morreale A., Venkatesan M., Mott H. R., Owen D., Nietlispach D., Lowe P. N., Laue E. D. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat Struct Biol. 2000 May;7(5):384–388. doi: 10.1038/75158. [DOI] [PubMed] [Google Scholar]
  27. Moskow J. J., Gladfelter A. S., Lamson R. E., Pryciak P. M., Lew D. J. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. Mol Cell Biol. 2000 Oct;20(20):7559–7571. doi: 10.1128/mcb.20.20.7559-7571.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mott H. R., Owen D., Nietlispach D., Lowe P. N., Manser E., Lim L., Laue E. D. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature. 1999 May 27;399(6734):384–388. doi: 10.1038/20732. [DOI] [PubMed] [Google Scholar]
  29. Murray J. M., Johnson D. I. The Cdc42p GTPase and its regulators Nrf1p and Scd1p are involved in endocytic trafficking in the fission yeast Schizosaccharomyces pombe. J Biol Chem. 2000 Oct 19;276(5):3004–3009. doi: 10.1074/jbc.M007389200. [DOI] [PubMed] [Google Scholar]
  30. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  31. Nur-E-Kamal M. S., Sizeland A., D'Abaco G., Maruta H. Asparagine 26, glutamic acid 31, valine 45, and tyrosine 64 of Ras proteins are required for their oncogenicity. J Biol Chem. 1992 Jan 25;267(3):1415–1418. [PubMed] [Google Scholar]
  32. Oehlen L. J., Cross F. R. The role of Cdc42 in signal transduction and mating of the budding yeast Saccharomyces cerevisiae. J Biol Chem. 1998 Apr 10;273(15):8556–8559. doi: 10.1074/jbc.273.15.8556. [DOI] [PubMed] [Google Scholar]
  33. Peter M., Neiman A. M., Park H. O., van Lohuizen M., Herskowitz I. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 1996 Dec 16;15(24):7046–7059. [PMC free article] [PubMed] [Google Scholar]
  34. Philippsen P., Stotz A., Scherf C. DNA of Saccharomyces cerevisiae. Methods Enzymol. 1991;194:169–182. doi: 10.1016/0076-6879(91)94014-4. [DOI] [PubMed] [Google Scholar]
  35. Raitt D. C., Posas F., Saito H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 2000 Sep 1;19(17):4623–4631. doi: 10.1093/emboj/19.17.4623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Reneke J. E., Blumer K. J., Courchesne W. E., Thorner J. The carboxy-terminal segment of the yeast alpha-factor receptor is a regulatory domain. Cell. 1988 Oct 21;55(2):221–234. doi: 10.1016/0092-8674(88)90045-1. [DOI] [PubMed] [Google Scholar]
  37. Richman T. J., Sawyer M. M., Johnson D. I. The Cdc42p GTPase is involved in a G2/M morphogenetic checkpoint regulating the apical-isotropic switch and nuclear division in yeast. J Biol Chem. 1999 Jun 11;274(24):16861–16870. doi: 10.1074/jbc.274.24.16861. [DOI] [PubMed] [Google Scholar]
  38. Simon M. N., De Virgilio C., Souza B., Pringle J. R., Abo A., Reed S. I. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature. 1995 Aug 24;376(6542):702–705. doi: 10.1038/376702a0. [DOI] [PubMed] [Google Scholar]
  39. Stevens W. K., Vranken W., Goudreau N., Xiang H., Xu P., Ni F. Conformation of a Cdc42/Rac interactive binding peptide in complex with Cdc42 and analysis of the binding interface. Biochemistry. 1999 May 11;38(19):5968–5975. doi: 10.1021/bi990426u. [DOI] [PubMed] [Google Scholar]
  40. Symons M., Derry J. M., Karlak B., Jiang S., Lemahieu V., Mccormick F., Francke U., Abo A. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell. 1996 Mar 8;84(5):723–734. doi: 10.1016/s0092-8674(00)81050-8. [DOI] [PubMed] [Google Scholar]
  41. Talian J. C., Olmsted J. B., Goldman R. D. A rapid procedure for preparing fluorescein-labeled specific antibodies from whole antiserum: its use in analyzing cytoskeletal architecture. J Cell Biol. 1983 Oct;97(4):1277–1282. doi: 10.1083/jcb.97.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wu C., Lee S. F., Furmaniak-Kazmierczak E., Côté G. P., Thomas D. Y., Leberer E. Activation of myosin-I by members of the Ste20p protein kinase family. J Biol Chem. 1996 Dec 13;271(50):31787–31790. doi: 10.1074/jbc.271.50.31787. [DOI] [PubMed] [Google Scholar]
  43. Wu C., Leeuw T., Leberer E., Thomas D. Y., Whiteway M. Cell cycle- and Cln2p-Cdc28p-dependent phosphorylation of the yeast Ste20p protein kinase. J Biol Chem. 1998 Oct 23;273(43):28107–28115. doi: 10.1074/jbc.273.43.28107. [DOI] [PubMed] [Google Scholar]
  44. Wu C., Whiteway M., Thomas D. Y., Leberer E. Molecular characterization of Ste20p, a potential mitogen-activated protein or extracellular signal-regulated kinase kinase (MEK) kinase kinase from Saccharomyces cerevisiae. J Biol Chem. 1995 Jul 7;270(27):15984–15992. doi: 10.1074/jbc.270.27.15984. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES