Abstract
Mutations at the mouse microphthalmia locus (Mitf) affect the development of different cell types, including melanocytes, retinal pigment epithelial cells of the eye, and osteoclasts. The MITF protein is a member of the MYC supergene family of basic-helix-loop-helix-leucine-zipper (bHLHZip) transcription factors and is known to regulate the expression of cell-specific target genes by binding DNA as homodimer or as heterodimer with related proteins. The many mutations isolated at the locus have different effects on the phenotype and can be arranged in an allelic series in which the phenotypes range from near normal to white microphthalmic animals with osteopetrosis. Previous investigations have shown that certain combinations of Mitf alleles complement each other, resulting in a phenotype more normal than that of each homozygote alone. Here we analyze this interallelic complementation in detail and show that it is limited to one particular allele, Mitf(Mi-white) (Mitf(Mi-wh)), a mutation affecting the DNA-binding domain. Both loss- and gain-of-function mutations are complemented, as are other Mitf mutations affecting the DNA-binding domain. Furthermore, this behavior is not restricted to particular cell types: Both eye development and coat color phenotypes are complemented. Our analysis suggests that Mitf(Mi-wh)-associated interallelic complementation is due to the unique biochemical nature of this mutation.
Full Text
The Full Text of this article is available as a PDF (305.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aroian R. V., Lesa G. M., Sternberg P. W. Mutations in the Caenorhabditis elegans let-23 EGFR-like gene define elements important for cell-type specificity and function. EMBO J. 1994 Jan 15;13(2):360–366. doi: 10.1002/j.1460-2075.1994.tb06269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bentley N. J., Eisen T., Goding C. R. Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol. 1994 Dec;14(12):7996–8006. doi: 10.1128/mcb.14.12.7996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hallsson J. H., Favor J., Hodgkinson C., Glaser T., Lamoreux M. L., Magnúsdóttir R., Gunnarsson G. J., Sweet H. O., Copeland N. G., Jenkins N. A. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics. 2000 May;155(1):291–300. doi: 10.1093/genetics/155.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemesath T. J., Steingrímsson E., McGill G., Hansen M. J., Vaught J., Hodgkinson C. A., Arnheiter H., Copeland N. G., Jenkins N. A., Fisher D. E. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994 Nov 15;8(22):2770–2780. doi: 10.1101/gad.8.22.2770. [DOI] [PubMed] [Google Scholar]
- Hodgkinson C. A., Moore K. J., Nakayama A., Steingrímsson E., Copeland N. G., Jenkins N. A., Arnheiter H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993 Jul 30;74(2):395–404. doi: 10.1016/0092-8674(93)90429-t. [DOI] [PubMed] [Google Scholar]
- Lamoreux M. L., Boissy R. E., Womack J. E., Nordlund J. J. The vit gene maps to the mi (microphthalmia) locus of the laboratory mouse. J Hered. 1992 Nov-Dec;83(6):435–439. doi: 10.1093/oxfordjournals.jhered.a111247. [DOI] [PubMed] [Google Scholar]
- Lerner A. B., Shiohara T., Boissy R. E., Jacobson K. A., Lamoreux M. L., Moellmann G. E. A mouse model for vitiligo. J Invest Dermatol. 1986 Sep;87(3):299–304. doi: 10.1111/1523-1747.ep12524353. [DOI] [PubMed] [Google Scholar]
- Moore K. J. Insight into the microphthalmia gene. Trends Genet. 1995 Nov;11(11):442–448. doi: 10.1016/s0168-9525(00)89143-x. [DOI] [PubMed] [Google Scholar]
- Morii E., Tsujimura T., Jippo T., Hashimoto K., Takebayashi K., Tsujino K., Nomura S., Yamamoto M., Kitamura Y. Regulation of mouse mast cell protease 6 gene expression by transcription factor encoded by the mi locus. Blood. 1996 Oct 1;88(7):2488–2494. [PubMed] [Google Scholar]
- Motyckova G., Weilbaecher K. N., Horstmann M., Rieman D. J., Fisher D. Z., Fisher D. E. Linking osteopetrosis and pycnodysostosis: regulation of cathepsin K expression by the microphthalmia transcription factor family. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5798–5803. doi: 10.1073/pnas.091479298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakayama A., Nguyen M. T., Chen C. C., Opdecamp K., Hodgkinson C. A., Arnheiter H. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech Dev. 1998 Jan;70(1-2):155–166. doi: 10.1016/s0925-4773(97)00188-3. [DOI] [PubMed] [Google Scholar]
- Raz E., Schejter E. D., Shilo B. Z. Interallelic complementation among DER/flb alleles: implications for the mechanism of signal transduction by receptor-tyrosine kinases. Genetics. 1991 Sep;129(1):191–201. doi: 10.1093/genetics/129.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steingrimsson Eiríkur, Tessarollo Lino, Pathak Bhavani, Hou Ling, Arnheiter Heinz, Copeland Neal G., Jenkins Nancy A. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4477–4482. doi: 10.1073/pnas.072071099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steingrímsson E., Moore K. J., Lamoreux M. L., Ferré-D'Amaré A. R., Burley S. K., Zimring D. C., Skow L. C., Hodgkinson C. A., Arnheiter H., Copeland N. G. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994 Nov;8(3):256–263. doi: 10.1038/ng1194-256. [DOI] [PubMed] [Google Scholar]
- Steingrímsson E., Nii A., Fisher D. E., Ferré-D'Amaré A. R., McCormick R. J., Russell L. B., Burley S. K., Ward J. M., Jenkins N. A., Copeland N. G. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization. EMBO J. 1996 Nov 15;15(22):6280–6289. [PMC free article] [PubMed] [Google Scholar]
- West J. D., Fisher G., Loutit J. F., Marshall M. J., Nisbet N. W., Perry V. H. A new allele of microphthalmia induced in the mouse: microphthalmia--defective iris (midi). Genet Res. 1985 Dec;46(3):309–324. doi: 10.1017/s0016672300022801. [DOI] [PubMed] [Google Scholar]
- Yajima I., Sato S., Kimura T., Yasumoto K., Shibahara S., Goding C. R., Yamamoto H. An L1 element intronic insertion in the black-eyed white (Mitf[mi-bw]) gene: the loss of a single Mitf isoform responsible for the pigmentary defect and inner ear deafness. Hum Mol Genet. 1999 Aug;8(8):1431–1441. doi: 10.1093/hmg/8.8.1431. [DOI] [PubMed] [Google Scholar]
- Yasumoto K., Shibahara S. Molecular cloning of cDNA encoding a human TFEC isoform, a newly identified transcriptional regulator. Biochim Biophys Acta. 1997 Jul 17;1353(1):23–31. doi: 10.1016/s0167-4781(97)00034-1. [DOI] [PubMed] [Google Scholar]
- Yasumoto K., Yokoyama K., Shibata K., Tomita Y., Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 1994 Dec;14(12):8058–8070. doi: 10.1128/mcb.14.12.8058. [DOI] [PMC free article] [PubMed] [Google Scholar]