Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):277–286. doi: 10.1093/genetics/163.1.277

Effects of genetic background on response to selection in experimental populations of Arabidopsis thaliana.

Mark C Ungerer 1, C Randal Linder 1, Loren H Rieseberg 1
PMCID: PMC1462413  PMID: 12586715

Abstract

The extent to which genetic background can influence allelic fitness is poorly understood, despite having important evolutionary consequences. Using experimental populations of Arabidopsis thaliana and map-based population genetic data, we examined a multigeneration response to selection in populations with differentiated genetic backgrounds. Replicated experimental populations of A. thaliana with genetic backgrounds derived from ecotypes Landsberg and Niederzenz were subjected to strong viability and fertility selection by growing individuals from each population at high density for three generations in a growth chamber. Patterns of genome-wide selection were evaluated by examining deviations from expected frequencies of mapped molecular markers. Estimates of selection coefficients for individual genomic regions ranged from near 0 to 0.685. Genomic regions demonstrating the strongest response to selection most often were selected similarly in both genetic backgrounds. The selection response of several weakly selected regions, however, appeared to be sensitive to genetic background, but only one region showed evidence of positive selection in one background and negative selection in another. These results are most consistent with models of adaptive evolution in which allelic fitnesses are not strongly influenced by genetic background and only infrequently change in sign due to variation at other loci.

Full Text

The Full Text of this article is available as a PDF (150.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard R. W. The Wilhelmine E. Key 1987 invitational lecture. Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J Hered. 1988 Jul-Aug;79(4):225–238. doi: 10.1093/oxfordjournals.jhered.a110503. [DOI] [PubMed] [Google Scholar]
  2. Allard R. W. The mating system and microevolution. Genetics. 1975 Jun;79 (Suppl):115–126. [PubMed] [Google Scholar]
  3. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  4. Bryant E. H., McCommas S. A., Combs L. M. The Effect of an Experimental Bottleneck upon Quantitative Genetic Variation in the Housefly. Genetics. 1986 Dec;114(4):1191–1211. doi: 10.1093/genetics/114.4.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clegg M. T., Allard R. W., Kahler A. L. Is the gene the unit of selection? Evidence from two experimental plant populations. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2474–2478. doi: 10.1073/pnas.69.9.2474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doebley J., Stec A., Gustus C. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics. 1995 Sep;141(1):333–346. doi: 10.1093/genetics/141.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenster C. B., Galloway L. F. Population differentiation in an annual legume: genetic architecture. Evolution. 2000 Aug;54(4):1157–1172. doi: 10.1111/j.0014-3820.2000.tb00551.x. [DOI] [PubMed] [Google Scholar]
  8. KING J. C. Evidence for the integration of the gene pool from studies of DDT resistance in Drosophila. Cold Spring Harb Symp Quant Biol. 1955;20:311–317. doi: 10.1101/sqb.1955.020.01.031. [DOI] [PubMed] [Google Scholar]
  9. Kim S. C., Rieseberg L. H. The contribution of epistasis to species differences in annual sunflowers. Mol Ecol. 2001 Mar;10(3):683–690. doi: 10.1046/j.1365-294x.2001.01203.x. [DOI] [PubMed] [Google Scholar]
  10. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  11. Lark K. G., Chase K., Adler F., Mansur L. M., Orf J. H. Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4656–4660. doi: 10.1073/pnas.92.10.4656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leips J., Mackay T. F. Quantitative trait loci for life span in Drosophila melanogaster: interactions with genetic background and larval density. Genetics. 2000 Aug;155(4):1773–1788. doi: 10.1093/genetics/155.4.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li Z., Pinson S. R., Park W. D., Paterson A. H., Stansel J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics. 1997 Feb;145(2):453–465. doi: 10.1093/genetics/145.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Long A. D., Mullaney S. L., Reid L. A., Fry J. D., Langley C. H., Mackay T. F. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics. 1995 Mar;139(3):1273–1291. doi: 10.1093/genetics/139.3.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rick C M. Differential Zygotic Lethality in a Tomato Species Hybrid. Genetics. 1963 Nov;48(11):1497–1507. doi: 10.1093/genetics/48.11.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM. Role of Gene Interactions in Hybrid Speciation: Evidence from Ancient and Experimental Hybrids. Science. 1996 May 3;272(5262):741–745. doi: 10.1126/science.272.5262.741. [DOI] [PubMed] [Google Scholar]
  17. Shook D. R., Johnson T. E. Quantitative trait loci affecting survival and fertility-related traits in Caenorhabditis elegans show genotype-environment interactions, pleiotropy and epistasis. Genetics. 1999 Nov;153(3):1233–1243. doi: 10.1093/genetics/153.3.1233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Stam L. F., Laurie C. C. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1559–1564. doi: 10.1093/genetics/144.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stephens S G. The Cytogenetics of Speciation in Gossypium. I. Selective Elimination of the Donor Parent Genotype in Interspecific Backcrosses. Genetics. 1949 Sep;34(5):627–637. doi: 10.1093/genetics/34.5.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wade M. J., Goodnight C. J. Wright's shifting balance theory: an experimental study. Science. 1991 Aug 30;253(5023):1015–1018. doi: 10.1126/science.1887214. [DOI] [PubMed] [Google Scholar]
  21. Whitlock MC, Phillips PC. The exquisite corpse: a shifting view of the shifting balance. Trends Ecol Evol. 2000 Sep;15(9):347–348. doi: 10.1016/s0169-5347(00)01930-3. [DOI] [PubMed] [Google Scholar]
  22. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES