Abstract
New synthetic approaches, such as combinatorial chemistry, provide a rich source of potential drug candidates. At the same time, the human genome initiative and other large-scale sequencing projects provide a large number of novel drug targets. However, the functional analysis of thousands of new genes remains a major challenge for the future. A systematic strategy for genome-wide functional analysis of genes could employ the fact that at least some modules in multi-domain proteins are encoded in individual exons. Exon amplification provides information about coding regions of most genes that is independent of their transcriptional status; exon amplification from entire mammalian genomes has been demonstrated. Here, we describe the development of an exon-trap system, lambdaGEE (for genomic exon expression), that couples exon amplification with the expression of exon-encoded peptides.
Full Text
The Full Text of this article is available as a PDF (51.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auch D., Reth M. Exon trap cloning: using PCR to rapidly detect and clone exons from genomic DNA fragments. Nucleic Acids Res. 1990 Nov 25;18(22):6743–6744. doi: 10.1093/nar/18.22.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckler A. J., Chang D. D., Graw S. L., Brook J. D., Haber D. A., Sharp P. A., Housman D. E. Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A. 1991 May 1;88(9):4005–4009. doi: 10.1073/pnas.88.9.4005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chabala J. C. Solid-phase combinatorial chemistry and novel tagging methods for identifying leads. Curr Opin Biotechnol. 1995 Dec;6(6):632–639. doi: 10.1016/0958-1669(95)80104-9. [DOI] [PubMed] [Google Scholar]
- Duyk G. M., Kim S. W., Myers R. M., Cox D. R. Exon trapping: a genetic screen to identify candidate transcribed sequences in cloned mammalian genomic DNA. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8995–8999. doi: 10.1073/pnas.87.22.8995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ephrussi A., Church G. M., Tonegawa S., Gilbert W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985 Jan 11;227(4683):134–140. doi: 10.1126/science.3917574. [DOI] [PubMed] [Google Scholar]
- Gallop M. A., Barrett R. W., Dower W. J., Fodor S. P., Gordon E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem. 1994 Apr 29;37(9):1233–1251. doi: 10.1021/jm00035a001. [DOI] [PubMed] [Google Scholar]
- Gilbert W. The exon theory of genes. Cold Spring Harb Symp Quant Biol. 1987;52:901–905. doi: 10.1101/sqb.1987.052.01.098. [DOI] [PubMed] [Google Scholar]
- Go M. Correlation of DNA exonic regions with protein structural units in haemoglobin. Nature. 1981 May 7;291(5810):90–92. doi: 10.1038/291090a0. [DOI] [PubMed] [Google Scholar]
- Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P., Gallop M. A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem. 1994 May 13;37(10):1385–1401. doi: 10.1021/jm00036a001. [DOI] [PubMed] [Google Scholar]
- Hainzl T., Boehm T. A versatile expression vector for the in vitro study of protein-protein interactions: characterization of E47 mutant proteins. Oncogene. 1994 Mar;9(3):885–891. [PubMed] [Google Scholar]
- Hamaguchi M., Sakamoto H., Tsuruta H., Sasaki H., Muto T., Sugimura T., Terada M. Establishment of a highly sensitive and specific exon-trapping system. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9779–9783. doi: 10.1073/pnas.89.20.9779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochuli E., Döbeli H., Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr. 1987 Dec 18;411:177–184. doi: 10.1016/s0021-9673(00)93969-4. [DOI] [PubMed] [Google Scholar]
- Kamps M. P., Murre C., Sun X. H., Baltimore D. A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell. 1990 Feb 23;60(4):547–555. doi: 10.1016/0092-8674(90)90658-2. [DOI] [PubMed] [Google Scholar]
- Nehls M., Pfeifer D., Boehm T. Exon amplification from complete libraries of genomic DNA using a novel phage vector with automatic plasmid excision facility: application to the mouse neurofibromatosis-1 locus. Oncogene. 1994 Aug;9(8):2169–2175. [PubMed] [Google Scholar]
- Nehls M., Pfeifer D., Micklem G., Schmoor C., Boehm T. The sequence complexity of exons trapped from the mouse genome. Curr Biol. 1994 Nov 1;4(11):983–989. doi: 10.1016/s0960-9822(00)00222-0. [DOI] [PubMed] [Google Scholar]
- Neuberger M. S. Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J. 1983;2(8):1373–1378. doi: 10.1002/j.1460-2075.1983.tb01594.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patthy L. Exons--original building blocks of proteins? Bioessays. 1991 Apr;13(4):187–192. doi: 10.1002/bies.950130408. [DOI] [PubMed] [Google Scholar]
