Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):55–67. doi: 10.1093/genetics/163.1.55

The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae.

Anuradha Sundararajan 1, Bum-Soo Lee 1, David J Garfinkel 1
PMCID: PMC1462422  PMID: 12586696

Abstract

Although most Ty1 elements in Saccharomyces cerevisiae are competent for retrotransposition, host defense genes can inhibit different steps of the Ty1 life cycle. Here, we demonstrate that Rad27, a structure-specific nuclease that plays an important role in DNA replication and genome stability, inhibits Ty1 at a post-translational level. We have examined the effects of various rad27 mutations on Ty1 element retrotransposition and cDNA recombination, termed Ty1 mobility. The point mutations rad27-G67S, rad27-G240D, and rad27-E158D that cause defects in certain enzymatic activities in vitro result in variable increases in Ty1 mobility, ranging from 4- to 22-fold. The C-terminal frameshift mutation rad27-324 confers the maximum increase in Ty1 mobility (198-fold), unincorporated cDNA, and insertion at preferred target sites. The null mutation differs from the other rad27 alleles by increasing the frequency of multimeric Ty1 insertions and cDNA recombination with a genomic element. The rad27 mutants do not markedly alter the levels of Ty1 RNA or the TyA1-gag protein. However, there is an increase in the stability of unincorporated Ty1 cDNA in rad27-324 and the null mutant. Our results suggest that Rad27 inhibits Ty1 mobility by destabilizing unincorporated Ty1 cDNA and preventing the formation of Ty1 multimers.

Full Text

The Full Text of this article is available as a PDF (367.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bambara R. A., Murante R. S., Henricksen L. A. Enzymes and reactions at the eukaryotic DNA replication fork. J Biol Chem. 1997 Feb 21;272(8):4647–4650. doi: 10.1074/jbc.272.8.4647. [DOI] [PubMed] [Google Scholar]
  2. Bergdahl S., Jacobsson B., Moberg L., Sönnerborg A. Pronounced anti-HIV-1 activity of foscarnet in patients without cytomegalovirus infection. J Acquir Immune Defic Syndr Hum Retrovirol. 1998 May 1;18(1):51–53. doi: 10.1097/00042560-199805010-00008. [DOI] [PubMed] [Google Scholar]
  3. Boeke J. D., Devine S. E. Yeast retrotransposons: finding a nice quiet neighborhood. Cell. 1998 Jun 26;93(7):1087–1089. doi: 10.1016/s0092-8674(00)81450-6. [DOI] [PubMed] [Google Scholar]
  4. Bradshaw V. A., McEntee K. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet. 1989 Sep;218(3):465–474. doi: 10.1007/BF00332411. [DOI] [PubMed] [Google Scholar]
  5. Braiterman L. T., Boeke J. D. In vitro integration of retrotransposon Ty1: a direct physical assay. Mol Cell Biol. 1994 Sep;14(9):5719–5730. doi: 10.1128/mcb.14.9.5719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brin E., Yi J., Skalka A. M., Leis J. Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration. J Biol Chem. 2000 Dec 15;275(50):39287–39295. doi: 10.1074/jbc.M006929200. [DOI] [PubMed] [Google Scholar]
  7. Bryk M., Banerjee M., Conte D., Jr, Curcio M. J. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays. Mol Cell Biol. 2001 Aug;21(16):5374–5388. doi: 10.1128/MCB.21.16.5374-5388.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Budd M. E., Campbell J. L. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol. 1997 Apr;17(4):2136–2142. doi: 10.1128/mcb.17.4.2136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen C., Kolodner R. D. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet. 1999 Sep;23(1):81–85. doi: 10.1038/12687. [DOI] [PubMed] [Google Scholar]
  10. Conte D., Jr, Barber E., Banerjee M., Garfinkel D. J., Curcio M. J. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol Cell Biol. 1998 May;18(5):2502–2513. doi: 10.1128/mcb.18.5.2502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curcio M. J., Garfinkel D. J. Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol Cell Biol. 1992 Jun;12(6):2813–2825. doi: 10.1128/mcb.12.6.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Curcio M. J., Garfinkel D. J. Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):936–940. doi: 10.1073/pnas.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Devine S. E., Boeke J. D. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 1996 Mar 1;10(5):620–633. doi: 10.1101/gad.10.5.620. [DOI] [PubMed] [Google Scholar]
  14. Eichinger D. J., Boeke J. D. A specific terminal structure is required for Ty1 transposition. Genes Dev. 1990 Mar;4(3):324–330. doi: 10.1101/gad.4.3.324. [DOI] [PubMed] [Google Scholar]
  15. Eichinger D. J., Boeke J. D. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell. 1988 Sep 23;54(7):955–966. doi: 10.1016/0092-8674(88)90110-9. [DOI] [PubMed] [Google Scholar]
  16. Frank G., Qiu J., Somsouk M., Weng Y., Somsouk L., Nolan J. P., Shen B. Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage of DNA substrates. J Biol Chem. 1998 Dec 4;273(49):33064–33072. doi: 10.1074/jbc.273.49.33064. [DOI] [PubMed] [Google Scholar]
  17. Friedberg E. C. Yeast genes involved in DNA-repair processes: new looks on old faces. Mol Microbiol. 1991 Oct;5(10):2303–2310. doi: 10.1111/j.1365-2958.1991.tb02074.x. [DOI] [PubMed] [Google Scholar]
  18. Gary R., Kim K., Cornelius H. L., Park M. S., Matsumoto Y. Proliferating cell nuclear antigen facilitates excision in long-patch base excision repair. J Biol Chem. 1999 Feb 12;274(7):4354–4363. doi: 10.1074/jbc.274.7.4354. [DOI] [PubMed] [Google Scholar]
  19. Gary R., Park M. S., Nolan J. P., Cornelius H. L., Kozyreva O. G., Tran H. T., Lobachev K. S., Resnick M. A., Gordenin D. A. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol Cell Biol. 1999 Aug;19(8):5373–5382. doi: 10.1128/mcb.19.8.5373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greene A. L., Snipe J. R., Gordenin D. A., Resnick M. A. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet. 1999 Nov;8(12):2263–2273. doi: 10.1093/hmg/8.12.2263. [DOI] [PubMed] [Google Scholar]
  21. Heyman T., Agoutin B., Friant S., Wilhelm F. X., Wilhelm M. L. Plus-strand DNA synthesis of the yeast retrotransposon Ty1 is initiated at two sites, PPT1 next to the 3' LTR and PPT2 within the pol gene. PPT1 is sufficient for Ty1 transposition. J Mol Biol. 1995 Oct 20;253(2):291–303. doi: 10.1006/jmbi.1995.0553. [DOI] [PubMed] [Google Scholar]
  22. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  23. Hosfield D. J., Mol C. D., Shen B., Tainer J. A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell. 1998 Oct 2;95(1):135–146. doi: 10.1016/s0092-8674(00)81789-4. [DOI] [PubMed] [Google Scholar]
  24. Ji H., Moore D. P., Blomberg M. A., Braiterman L. T., Voytas D. F., Natsoulis G., Boeke J. D. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell. 1993 Jun 4;73(5):1007–1018. doi: 10.1016/0092-8674(93)90278-x. [DOI] [PubMed] [Google Scholar]
  25. Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr Genet. 1998 Jul;34(1):21–29. doi: 10.1007/s002940050362. [DOI] [PubMed] [Google Scholar]
  26. Kao Hui-I, Henricksen Leigh A., Liu Yuan, Bambara Robert A. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. 2002 Feb 1;277(17):14379–14389. doi: 10.1074/jbc.M110662200. [DOI] [PubMed] [Google Scholar]
  27. Kim K., Biade S., Matsumoto Y. Involvement of flap endonuclease 1 in base excision DNA repair. J Biol Chem. 1998 Apr 10;273(15):8842–8848. doi: 10.1074/jbc.273.15.8842. [DOI] [PubMed] [Google Scholar]
  28. Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997 Jun 2;16(11):3341–3348. doi: 10.1093/emboj/16.11.3341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee B. S., Bi L., Garfinkel D. J., Bailis A. M. Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol. 2000 Apr;20(7):2436–2445. doi: 10.1128/mcb.20.7.2436-2445.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lee B. S., Culbertson M. R. Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10354–10358. doi: 10.1073/pnas.92.22.10354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lee B. S., Lichtenstein C. P., Faiola B., Rinckel L. A., Wysock W., Curcio M. J., Garfinkel D. J. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics. 1998 Apr;148(4):1743–1761. doi: 10.1093/genetics/148.4.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li X., Li J., Harrington J., Lieber M. R., Burgers P. M. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. 1995 Sep 22;270(38):22109–22112. doi: 10.1074/jbc.270.38.22109. [DOI] [PubMed] [Google Scholar]
  33. Lieber M. R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays. 1997 Mar;19(3):233–240. doi: 10.1002/bies.950190309. [DOI] [PubMed] [Google Scholar]
  34. McClanahan T., McEntee K. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol. 1984 Nov;4(11):2356–2363. doi: 10.1128/mcb.4.11.2356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Moore S. P., Powers M., Garfinkel D. J. Substrate specificity of Ty1 integrase. J Virol. 1995 Aug;69(8):4683–4692. doi: 10.1128/jvi.69.8.4683-4692.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Müller F., Laufer W., Pott U., Ciriacy M. Characterization of products of TY1-mediated reverse transcription in Saccharomyces cerevisiae. Mol Gen Genet. 1991 Apr;226(1-2):145–153. doi: 10.1007/BF00273598. [DOI] [PubMed] [Google Scholar]
  37. Negritto M. C., Qiu J., Ratay D. O., Shen B., Bailis A. M. Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol Cell Biol. 2001 Apr;21(7):2349–2358. doi: 10.1128/MCB.21.7.2349-2358.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Parenteau J., Wellinger R. J. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol Cell Biol. 1999 Jun;19(6):4143–4152. doi: 10.1128/mcb.19.6.4143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pochart P., Agoutin B., Rousset S., Chanet R., Doroszkiewicz V., Heyman T. Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1DNA plus strand synthesis. Nucleic Acids Res. 1993 Jul 25;21(15):3513–3520. doi: 10.1093/nar/21.15.3513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prakash S., Sung P., Prakash L. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu Rev Genet. 1993;27:33–70. doi: 10.1146/annurev.ge.27.120193.000341. [DOI] [PubMed] [Google Scholar]
  41. Qiu J., Li X., Frank G., Shen B. Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem. 2000 Oct 25;276(7):4901–4908. doi: 10.1074/jbc.M007825200. [DOI] [PubMed] [Google Scholar]
  42. Reagan M. S., Pittenger C., Siede W., Friedberg E. C. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol. 1995 Jan;177(2):364–371. doi: 10.1128/jb.177.2.364-371.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schmitt M. E., Brown T. A., Trumpower B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 1990 May 25;18(10):3091–3092. doi: 10.1093/nar/18.10.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scholes D. T., Banerjee M., Bowen B., Curcio M. J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics. 2001 Dec;159(4):1449–1465. doi: 10.1093/genetics/159.4.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schweitzer J. K., Livingston D. M. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet. 1998 Jan;7(1):69–74. doi: 10.1093/hmg/7.1.69. [DOI] [PubMed] [Google Scholar]
  46. Sharon G., Burkett T. J., Garfinkel D. J. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol. 1994 Oct;14(10):6540–6551. doi: 10.1128/mcb.14.10.6540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Staleva Staleva L., Venkov P. Activation of Ty transposition by mutagens. Mutat Res. 2001 Mar 1;474(1-2):93–103. doi: 10.1016/s0027-5107(00)00165-2. [DOI] [PubMed] [Google Scholar]
  48. Symington L. S. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 1998 Dec 15;26(24):5589–5595. doi: 10.1093/nar/26.24.5589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tong A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Pagé N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 2001 Dec 14;294(5550):2364–2368. doi: 10.1126/science.1065810. [DOI] [PubMed] [Google Scholar]
  50. Vallen E. A., Cross F. R. Mutations in RAD27 define a potential link between G1 cyclins and DNA replication. Mol Cell Biol. 1995 Aug;15(8):4291–4302. doi: 10.1128/mcb.15.8.4291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wang Y., Cortez D., Yazdi P., Neff N., Elledge S. J., Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 2000 Apr 15;14(8):927–939. [PMC free article] [PubMed] [Google Scholar]
  52. Weinstock K. G., Mastrangelo M. F., Burkett T. J., Garfinkel D. J., Strathern J. N. Multimeric arrays of the yeast retrotransposon Ty. Mol Cell Biol. 1990 Jun;10(6):2882–2892. doi: 10.1128/mcb.10.6.2882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. White P. J., Borts R. H., Hirst M. C. Stability of the human fragile X (CGG)(n) triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol Cell Biol. 1999 Aug;19(8):5675–5684. doi: 10.1128/mcb.19.8.5675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Winston F., Durbin K. J., Fink G. R. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell. 1984 Dec;39(3 Pt 2):675–682. doi: 10.1016/0092-8674(84)90474-4. [DOI] [PubMed] [Google Scholar]
  55. Yoder K. E., Bushman F. D. Repair of gaps in retroviral DNA integration intermediates. J Virol. 2000 Dec;74(23):11191–11200. doi: 10.1128/jvi.74.23.11191-11200.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zennou V., Petit C., Guetard D., Nerhbass U., Montagnier L., Charneau P. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 2000 Apr 14;101(2):173–185. doi: 10.1016/S0092-8674(00)80828-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES