Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):69–77. doi: 10.1093/genetics/163.1.69

Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae.

W Hunter White 1, Paul L Skatrud 1, Zhixiong Xue 1, Jeremy H Toyn 1
PMCID: PMC1462426  PMID: 12586697

Abstract

The amino acid beta-alanine is an intermediate in pantothenic acid (vitamin B(5)) and coenzyme A (CoA) biosynthesis. In contrast to bacteria, yeast derive the beta-alanine required for pantothenic acid production via polyamine metabolism, mediated by the four SPE genes and by the FAD-dependent amine oxidase encoded by FMS1. Because amine oxidases generally produce aldehyde derivatives of amine compounds, we propose that an additional aldehyde-dehydrogenase-mediated step is required to make beta-alanine from the precursor aldehyde, 3-aminopropanal. This study presents evidence that the closely related aldehyde dehydrogenase genes ALD2 and ALD3 are required for pantothenic acid biosynthesis via conversion of 3-aminopropanal to beta-alanine in vivo. While deletion of the nuclear gene encoding the unrelated mitochondrial Ald5p resulted in an enhanced requirement for pantothenic acid pathway metabolites, we found no evidence to indicate that the Ald5p functions directly in the conversion of 3-aminopropanal to beta-alanine. Thus, in Saccharomyces cerevisiae, ALD2 and ALD3 are specialized for beta-alanine biosynthesis and are consequently involved in the cellular biosynthesis of coenzyme A.

Full Text

The Full Text of this article is available as a PDF (245.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berben G., Dumont J., Gilliquet V., Bolle P. A., Hilger F. The YDp plasmids: a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast. 1991 Jul;7(5):475–477. doi: 10.1002/yea.320070506. [DOI] [PubMed] [Google Scholar]
  2. Cronan J. E., Jr Beta-alanine synthesis in Escherichia coli. J Bacteriol. 1980 Mar;141(3):1291–1297. doi: 10.1128/jb.141.3.1291-1297.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickinson F. M. The purification and some properties of the Mg(2+)-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae. Biochem J. 1996 Apr 15;315(Pt 2):393–399. doi: 10.1042/bj3150393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gietz R. D., Sugino A. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 1988 Dec 30;74(2):527–534. doi: 10.1016/0378-1119(88)90185-0. [DOI] [PubMed] [Google Scholar]
  5. Hodges P. E., McKee A. H., Davis B. P., Payne W. E., Garrels J. I. The Yeast Proteome Database (YPD): a model for the organization and presentation of genome-wide functional data. Nucleic Acids Res. 1999 Jan 1;27(1):69–73. doi: 10.1093/nar/27.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hölttä E. Oxidation of spermidine and spermine in rat liver: purification and properties of polyamine oxidase. Biochemistry. 1977 Jan 11;16(1):91–100. doi: 10.1021/bi00620a015. [DOI] [PubMed] [Google Scholar]
  7. Jacobson M. K., Bernofsky C. Mitochondrial acetaldehyde dehydrogenase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1974 Jun 18;350(2):277–291. doi: 10.1016/0005-2744(74)90502-6. [DOI] [PubMed] [Google Scholar]
  8. Kurita O., Nishida Y. Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1999 Dec 15;181(2):281–287. doi: 10.1111/j.1574-6968.1999.tb08856.x. [DOI] [PubMed] [Google Scholar]
  9. Large P. J. Enzymes and pathways of polyamine breakdown in microorganisms. FEMS Microbiol Rev. 1992 Jun;8(3-4):249–262. doi: 10.1111/j.1574-6968.1992.tb04991.x. [DOI] [PubMed] [Google Scholar]
  10. Manivasakam P., Weber S. C., McElver J., Schiestl R. H. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Jul 25;23(14):2799–2800. doi: 10.1093/nar/23.14.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meaden P. G., Dickinson F. M., Mifsud A., Tessier W., Westwater J., Bussey H., Midgley M. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg(2+)-activated acetaldehyde dehydrogenase. Yeast. 1997 Nov;13(14):1319–1327. doi: 10.1002/(SICI)1097-0061(199711)13:14<1319::AID-YEA183>3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  12. Miralles V. J., Serrano R. A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress. Mol Microbiol. 1995 Aug;17(4):653–662. doi: 10.1111/j.1365-2958.1995.mmi_17040653.x. [DOI] [PubMed] [Google Scholar]
  13. Navarro-Aviño J. P., Prasad R., Miralles V. J., Benito R. M., Serrano R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast. 1999 Jul;15(10A):829–842. doi: 10.1002/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  14. Remize F., Andrieu E., Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol. 2000 Aug;66(8):3151–3159. doi: 10.1128/aem.66.8.3151-3159.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tessier W. D., Meaden P. G., Dickinson F. M., Midgley M. Identification and disruption of the gene encoding the K(+)-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1998 Jul 1;164(1):29–34. doi: 10.1111/j.1574-6968.1998.tb13063.x. [DOI] [PubMed] [Google Scholar]
  17. Tessier W., Dickinson M., Midgley M. The roles of acetaldehyde dehydrogenases in Saccharomyces cerevisiae. Adv Exp Med Biol. 1999;463:243–247. doi: 10.1007/978-1-4615-4735-8_30. [DOI] [PubMed] [Google Scholar]
  18. Thompson D. A., Stahl F. W. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics. 1999 Oct;153(2):621–641. doi: 10.1093/genetics/153.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang X., Mann C. J., Bai Y., Ni L., Weiner H. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. J Bacteriol. 1998 Feb;180(4):822–830. doi: 10.1128/jb.180.4.822-830.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. White W. H., Gunyuzlu P. L., Toyn J. H. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine. J Biol Chem. 2001 Jan 11;276(14):10794–10800. doi: 10.1074/jbc.M009804200. [DOI] [PubMed] [Google Scholar]
  21. Williamson J. M., Brown G. M. Purification and properties of L-Aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. J Biol Chem. 1979 Aug 25;254(16):8074–8082. [PubMed] [Google Scholar]
  22. Winzeler E. A., Shoemaker D. D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J. D., Bussey H. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999 Aug 6;285(5429):901–906. doi: 10.1126/science.285.5429.901. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES