Skip to main content
Genetics logoLink to Genetics
. 2003 Jan;163(1):79–89. doi: 10.1093/genetics/163.1.79

Genetic diversity in yeast assessed with whole-genome oligonucleotide arrays.

Elizabeth A Winzeler 1, Cristian I Castillo-Davis 1, Guy Oshiro 1, David Liang 1, Daniel R Richards 1, Yingyao Zhou 1, Daniel L Hartl 1
PMCID: PMC1462430  PMID: 12586698

Abstract

The availability of a complete genome sequence allows the detailed study of intraspecies variability. Here we use high-density oligonucleotide arrays to discover 11,115 single-feature polymorphisms (SFPs) existing in one or more of 14 different yeast strains. We use these SFPs to define regions of genetic identity between common laboratory strains of yeast. We assess the genome-wide distribution of genetic variation on the basis of this yeast population. We find that genome variability is biased toward the ends of chromosomes and is more likely to be found in genes with roles in fermentation or in transport. This subtelomeric bias may arise through recombination between nonhomologous sequences because full-gene deletions are more common in these regions than in more central regions of the chromosome.

Full Text

The Full Text of this article is available as a PDF (480.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bechet J., Greenson M., Wiame J. M. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1970 Jan;12(1):31–39. doi: 10.1111/j.1432-1033.1970.tb00817.x. [DOI] [PubMed] [Google Scholar]
  2. Begun D. J., Aquadro C. F. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. doi: 10.1038/356519a0. [DOI] [PubMed] [Google Scholar]
  3. Broun P., Ganal M. W., Tanksley S. D. Telomeric arrays display high levels of heritable polymorphism among closely related plant varieties. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1354–1357. doi: 10.1073/pnas.89.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998 Dec 11;282(5396):2012–2018. doi: 10.1126/science.282.5396.2012. [DOI] [PubMed] [Google Scholar]
  5. Cavalieri D., Townsend J. P., Hartl D. L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12369–12374. doi: 10.1073/pnas.210395297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chee M., Yang R., Hubbell E., Berno A., Huang X. C., Stern D., Winkler J., Lockhart D. J., Morris M. S., Fodor S. P. Accessing genetic information with high-density DNA arrays. Science. 1996 Oct 25;274(5287):610–614. doi: 10.1126/science.274.5287.610. [DOI] [PubMed] [Google Scholar]
  7. Chu S., DeRisi J., Eisen M., Mulholland J., Botstein D., Brown P. O., Herskowitz I. The transcriptional program of sporulation in budding yeast. Science. 1998 Oct 23;282(5389):699–705. doi: 10.1126/science.282.5389.699. [DOI] [PubMed] [Google Scholar]
  8. Conway D. J., Roper C., Oduola A. M., Arnot D. E., Kremsner P. G., Grobusch M. P., Curtis C. F., Greenwood B. M. High recombination rate in natural populations of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4506–4511. doi: 10.1073/pnas.96.8.4506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Freitas-Junior L. H., Bottius E., Pirrit L. A., Deitsch K. W., Scheidig C., Guinet F., Nehrbass U., Wellems T. E., Scherf A. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature. 2000 Oct 26;407(6807):1018–1022. doi: 10.1038/35039531. [DOI] [PubMed] [Google Scholar]
  10. Giaever Guri, Chu Angela M., Ni Li, Connelly Carla, Riles Linda, Véronneau Steeve, Dow Sally, Lucau-Danila Ankuta, Anderson Keith, André Bruno. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002 Jul 25;418(6896):387–391. doi: 10.1038/nature00935. [DOI] [PubMed] [Google Scholar]
  11. Gingeras T. R., Ghandour G., Wang E., Berno A., Small P. M., Drobniewski F., Alland D., Desmond E., Holodniy M., Drenkow J. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res. 1998 May;8(5):435–448. doi: 10.1101/gr.8.5.435. [DOI] [PubMed] [Google Scholar]
  12. Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
  13. Grünenfelder Björn, Winzeler Elizabeth A. Treasures and traps in genome-wide data sets: case examples from yeast. Nat Rev Genet. 2002 Sep;3(9):653–661. doi: 10.1038/nrg886. [DOI] [PubMed] [Google Scholar]
  14. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kane S. M., Roth R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol. 1974 Apr;118(1):8–14. doi: 10.1128/jb.118.1.8-14.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li C., Wong W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):31–36. doi: 10.1073/pnas.011404098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu H., Styles C. A., Fink G. R. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science. 1993 Dec 10;262(5140):1741–1744. doi: 10.1126/science.8259520. [DOI] [PubMed] [Google Scholar]
  18. Lockhart D. J., Winzeler E. A. Genomics, gene expression and DNA arrays. Nature. 2000 Jun 15;405(6788):827–836. doi: 10.1038/35015701. [DOI] [PubMed] [Google Scholar]
  19. Louis E. J., Naumova E. S., Lee A., Naumov G., Haber J. E. The chromosome end in yeast: its mosaic nature and influence on recombinational dynamics. Genetics. 1994 Mar;136(3):789–802. doi: 10.1093/genetics/136.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McCusker J. H., Clemons K. V., Stevens D. A., Davis R. W. Saccharomyces cerevisiae virulence phenotype as determined with CD-1 mice is associated with the ability to grow at 42 degrees C and form pseudohyphae. Infect Immun. 1994 Dec;62(12):5447–5455. doi: 10.1128/iai.62.12.5447-5455.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McCusker J. H., Haber J. E. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):303–315. doi: 10.1093/genetics/119.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mewes H. W., Heumann K., Kaps A., Mayer K., Pfeiffer F., Stocker S., Frishman D. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 1999 Jan 1;27(1):44–48. doi: 10.1093/nar/27.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mortimer R. K., Johnston J. R. Genealogy of principal strains of the yeast genetic stock center. Genetics. 1986 May;113(1):35–43. doi: 10.1093/genetics/113.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mortimer R. K., Romano P., Suzzi G., Polsinelli M. Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts. Yeast. 1994 Dec;10(12):1543–1552. doi: 10.1002/yea.320101203. [DOI] [PubMed] [Google Scholar]
  25. Nachman M. W., Bauer V. L., Crowell S. L., Aquadro C. F. DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998 Nov;150(3):1133–1141. doi: 10.1093/genetics/150.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Oshiro Guy, Wodicka Lisa M., Washburn Michael P., Yates John R., 3rd, Lockhart David J., Winzeler Elizabeth A. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res. 2002 Aug;12(8):1210–1220. doi: 10.1101/gr.226802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Primig M., Williams R. M., Winzeler E. A., Tevzadze G. G., Conway A. R., Hwang S. Y., Davis R. W., Esposito R. E. The core meiotic transcriptome in budding yeasts. Nat Genet. 2000 Dec;26(4):415–423. doi: 10.1038/82539. [DOI] [PubMed] [Google Scholar]
  28. Raghuraman M. K., Winzeler E. A., Collingwood D., Hunt S., Wodicka L., Conway A., Lockhart D. J., Davis R. W., Brewer B. J., Fangman W. L. Replication dynamics of the yeast genome. Science. 2001 Oct 5;294(5540):115–121. doi: 10.1126/science.294.5540.115. [DOI] [PubMed] [Google Scholar]
  29. Roberts D. J., Craig A. G., Berendt A. R., Pinches R., Nash G., Marsh K., Newbold C. I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992 Jun 25;357(6380):689–692. doi: 10.1038/357689a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steinmetz Lars M., Sinha Himanshu, Richards Dan R., Spiegelman Jamie I., Oefner Peter J., McCusker John H., Davis Ronald W. Dissecting the architecture of a quantitative trait locus in yeast. Nature. 2002 Mar 21;416(6878):326–330. doi: 10.1038/416326a. [DOI] [PubMed] [Google Scholar]
  31. Tavazoie S., Hughes J. D., Campbell M. J., Cho R. J., Church G. M. Systematic determination of genetic network architecture. Nat Genet. 1999 Jul;22(3):281–285. doi: 10.1038/10343. [DOI] [PubMed] [Google Scholar]
  32. Thomas B. J., Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell. 1989 Feb 24;56(4):619–630. doi: 10.1016/0092-8674(89)90584-9. [DOI] [PubMed] [Google Scholar]
  33. Winzeler E. A., Richards D. R., Conway A. R., Goldstein A. L., Kalman S., McCullough M. J., McCusker J. H., Stevens D. A., Wodicka L., Lockhart D. J. Direct allelic variation scanning of the yeast genome. Science. 1998 Aug 21;281(5380):1194–1197. doi: 10.1126/science.281.5380.1194. [DOI] [PubMed] [Google Scholar]
  34. Wodicka L., Dong H., Mittmann M., Ho M. H., Lockhart D. J. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol. 1997 Dec;15(13):1359–1367. doi: 10.1038/nbt1297-1359. [DOI] [PubMed] [Google Scholar]
  35. Wyrick J. J., Aparicio J. G., Chen T., Barnett J. D., Jennings E. G., Young R. A., Bell S. P., Aparicio O. M. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001 Dec 14;294(5550):2357–2360. doi: 10.1126/science.1066101. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES