Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):457–466. doi: 10.1093/genetics/163.2.457

An analysis of why highly similar enzymes evolve differently.

Fahd K Majiduddin 1, Timothy Palzkill 1
PMCID: PMC1462441  PMID: 12618385

Abstract

The TEM-1 and SHV-1 beta-lactamases are important contributors to resistance to beta-lactam antibiotics in gram-negative bacteria. These enzymes share 68% amino acid sequence identity and their atomic structures are nearly superimposable. Extended-spectrum cephalosporins were introduced to avoid the action of these beta-lactamases. The widespread use of antibiotics has led to the evolution of variant TEM and SHV enzymes that can hydrolyze extended-spectrum antibiotics. Despite being highly similar in structure, the TEM and SHV enzymes have evolved differently in response to the selective pressure of antibiotic therapy. Examples of this are at residues Arg164 and Asp179. Among TEM variants, substitutions are found only at position 164, while among SHV variants, substitutions are found only at position 179. To explain this observation, the effects of substitutions at position 164 in both TEM-1 and SHV-1 on antibiotic resistance and on enzyme catalytic efficiency were examined. Competition experiments were performed between mutants to understand why certain substitutions preferentially evolve in response to the selective pressure of antibiotic therapy. The data presented here indicate that substitutions at position Asp179 in SHV-1 and Arg164 in TEM-1 are more beneficial to bacteria because they provide increased fitness relative to either wild type or other mutants.

Full Text

The Full Text of this article is available as a PDF (227.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  2. Arlet G., Brami G., Décrè D., Flippo A., Gaillot O., Lagrange P. H., Philippon A. Molecular characterisation by PCR-restriction fragment length polymorphism of TEM beta-lactamases. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):203–208. doi: 10.1111/j.1574-6968.1995.tb07938.x. [DOI] [PubMed] [Google Scholar]
  3. Arlet G., Rouveau M., Philippon A. Substitution of alanine for aspartate at position 179 in the SHV-6 extended-spectrum beta-lactamase. FEMS Microbiol Lett. 1997 Jul 1;152(1):163–167. doi: 10.1016/s0378-1097(97)00196-1. [DOI] [PubMed] [Google Scholar]
  4. Bonomo R. A., Rudin S. D., Shlaes D. M. OHIO-1 beta-lactamase mutants: Asp179Gly mutation confers resistance to ceftazidime. FEMS Microbiol Lett. 1997 Jul 15;152(2):275–278. doi: 10.1111/j.1574-6968.1997.tb10439.x. [DOI] [PubMed] [Google Scholar]
  5. Bradford P. A., Cherubin C. E., Idemyor V., Rasmussen B. A., Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother. 1994 Apr;38(4):761–766. doi: 10.1128/aac.38.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cantu C., 3rd, Huang W., Palzkill T. Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase. J Biol Chem. 1997 Nov 14;272(46):29144–29150. doi: 10.1074/jbc.272.46.29144. [DOI] [PubMed] [Google Scholar]
  7. Cantu C., 3rd, Huang W., Palzkill T. Selection and characterization of amino acid substitutions at residues 237-240 of TEM-1 beta-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996 Sep 13;271(37):22538–22545. doi: 10.1074/jbc.271.37.22538. [DOI] [PubMed] [Google Scholar]
  8. Cantu C., 3rd, Palzkill T. The role of residue 238 of TEM-1 beta-lactamase in the hydrolysis of extended-spectrum antibiotics. J Biol Chem. 1998 Oct 9;273(41):26603–26609. doi: 10.1074/jbc.273.41.26603. [DOI] [PubMed] [Google Scholar]
  9. Diekema D. J., Brueggemann A. B., Doern G. V. Antimicrobial-drug use and changes in resistance in Streptococcus pneumoniae. Emerg Infect Dis. 2000 Sep-Oct;6(5):552–556. doi: 10.3201/eid0605.000519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frère J. M. Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol. 1995 May;16(3):385–395. doi: 10.1111/j.1365-2958.1995.tb02404.x. [DOI] [PubMed] [Google Scholar]
  11. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  12. Goussard S., Courvalin P. Updated sequence information for TEM beta-lactamase genes. Antimicrob Agents Chemother. 1999 Feb;43(2):367–370. doi: 10.1128/aac.43.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heritage J., M'Zali F. H., Gascoyne-Binzi D., Hawkey P. M. Evolution and spread of SHV extended-spectrum beta-lactamases in gram-negative bacteria. J Antimicrob Chemother. 1999 Sep;44(3):309–318. doi: 10.1093/jac/44.3.309. [DOI] [PubMed] [Google Scholar]
  14. Ho B. Y., Karschin A., Branchek T., Davidson N., Lester H. A. The role of conserved aspartate and serine residues in ligand binding and in function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett. 1992 Nov 9;312(2-3):259–262. doi: 10.1016/0014-5793(92)80948-g. [DOI] [PubMed] [Google Scholar]
  15. Huang W., Palzkill T. A natural polymorphism in beta-lactamase is a global suppressor. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8801–8806. doi: 10.1073/pnas.94.16.8801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hujer A. M., Hujer K. M., Bonomo R. A. Mutagenesis of amino acid residues in the SHV-1 beta-lactamase: the premier role of Gly238Ser in penicillin and cephalosporin resistance. Biochim Biophys Acta. 2001 May 5;1547(1):37–50. doi: 10.1016/s0167-4838(01)00164-9. [DOI] [PubMed] [Google Scholar]
  17. Jelsch C., Mourey L., Masson J. M., Samama J. P. Crystal structure of Escherichia coli TEM1 beta-lactamase at 1.8 A resolution. Proteins. 1993 Aug;16(4):364–383. doi: 10.1002/prot.340160406. [DOI] [PubMed] [Google Scholar]
  18. Kurokawa H., Yagi T., Shibata N., Shibayama K., Kamachi K., Arakawa Y. A new SHV-derived extended-spectrum beta-lactamase (SHV-24) that hydrolyzes ceftazidime through a single-amino-acid substitution (D179G) in the -loop. Antimicrob Agents Chemother. 2000 Jun;44(6):1725–1727. doi: 10.1128/aac.44.6.1725-1727.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuzin A. P., Nukaga M., Nukaga Y., Hujer A. M., Bonomo R. A., Knox J. R. Structure of the SHV-1 beta-lactamase. Biochemistry. 1999 May 4;38(18):5720–5727. doi: 10.1021/bi990136d. [DOI] [PubMed] [Google Scholar]
  20. Lesch C. A., Itokazu G. S., Danziger L. H., Weinstein R. A. Multi-hospital analysis of antimicrobial usage and resistance trends. Diagn Microbiol Infect Dis. 2001 Nov;41(3):149–154. doi: 10.1016/s0732-8893(01)00296-6. [DOI] [PubMed] [Google Scholar]
  21. Livermore D. M., Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol. 2000 Oct;3(5):489–495. doi: 10.1016/s1369-5274(00)00128-4. [DOI] [PubMed] [Google Scholar]
  22. Marano N. N., Rossiter S., Stamey K., Joyce K., Barrett T. J., Tollefson L. K., Angulo F. J. The National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria, 1996-1999: surveillance for action. J Am Vet Med Assoc. 2000 Dec 15;217(12):1829–1830. [PubMed] [Google Scholar]
  23. Massova I., Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother. 1998 Jan;42(1):1–17. doi: 10.1128/aac.42.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maveyraud L., Saves I., Burlet-Schiltz O., Swarén P., Masson J. M., Delaire M., Mourey L., Promé J. C., Samama J. P. Structural basis of extended spectrum TEM beta-lactamases. Crystallographic, kinetic, and mass spectrometric investigations of enzyme mutants. J Biol Chem. 1996 May 3;271(18):10482–10489. doi: 10.1074/jbc.271.18.10482. [DOI] [PubMed] [Google Scholar]
  25. Navarre W. W., Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999 Mar;63(1):174–229. doi: 10.1128/mmbr.63.1.174-229.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Palzkill T., Le Q. Q., Venkatachalam K. V., LaRocco M., Ocera H. Evolution of antibiotic resistance: several different amino acid substitutions in an active site loop alter the substrate profile of beta-lactamase. Mol Microbiol. 1994 Apr;12(2):217–229. doi: 10.1111/j.1365-2958.1994.tb01011.x. [DOI] [PubMed] [Google Scholar]
  27. Perilli Mariagrazia, Segatore Bernardetta, De Massis Maria Rosaria, Franceschini Nicola, Bianchi Ciro, Rossolini Gian Maria, Amicosante Gianfranco. Characterization of a new extended-spectrum beta-lactamase (TEM-87) isolated in Proteus mirabilis during an Italian survey. Antimicrob Agents Chemother. 2002 Mar;46(3):925–928. doi: 10.1128/AAC.46.3.925-928.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Petrosino J., Rudgers G., Gilbert H., Palzkill T. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of beta-lactamases. J Biol Chem. 1999 Jan 22;274(4):2394–2400. doi: 10.1074/jbc.274.4.2394. [DOI] [PubMed] [Google Scholar]
  29. Randegger C. C., Keller A., Irla M., Wada A., Hächler H. Contribution of natural amino acid substitutions in SHV extended-spectrum beta-lactamases to resistance against various beta-lactams. Antimicrob Agents Chemother. 2000 Oct;44(10):2759–2763. doi: 10.1128/aac.44.10.2759-2763.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Raquet X., Lamotte-Brasseur J., Fonzé E., Goussard S., Courvalin P., Frère J. M. TEM beta-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis. J Mol Biol. 1994 Dec 16;244(5):625–639. doi: 10.1006/jmbi.1994.1756. [DOI] [PubMed] [Google Scholar]
  31. Rasheed J. K., Jay C., Metchock B., Berkowitz F., Weigel L., Crellin J., Steward C., Hill B., Medeiros A. A., Tenover F. C. Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother. 1997 Mar;41(3):647–653. doi: 10.1128/aac.41.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rolinson G. N. Evolution of beta-lactamase inhibitors. Rev Infect Dis. 1991 Jul-Aug;13 (Suppl 9):S727–S732. doi: 10.1093/clinids/13.supplement_9.s727. [DOI] [PubMed] [Google Scholar]
  33. Sideraki V., Huang W., Palzkill T., Gilbert H. F. A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):283–288. doi: 10.1073/pnas.011454198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vaiani R., Arcelloni C., Comuzzi B., Gesu G., Bonato C., Paroni R. Evaluation of ceftazidime concentration released in agar from an E test strip. Eur J Clin Microbiol Infect Dis. 2000 Jul;19(7):551–554. doi: 10.1007/s100960000308. [DOI] [PubMed] [Google Scholar]
  35. Vakulenko S. B., Taibi-Tronche P., Tóth M., Massova I., Lerner S. A., Mobashery S. Effects on substrate profile by mutational substitutions at positions 164 and 179 of the class A TEM(pUC19) beta-lactamase from Escherichia coli. J Biol Chem. 1999 Aug 13;274(33):23052–23060. doi: 10.1074/jbc.274.33.23052. [DOI] [PubMed] [Google Scholar]
  36. Vakulenko S. B., Tóth M., Taibi P., Mobashery S., Lerner S. A. Effects of Asp-179 mutations in TEMpUC19 beta-lactamase on susceptibility to beta-lactams. Antimicrob Agents Chemother. 1995 Aug;39(8):1878–1880. doi: 10.1128/aac.39.8.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vinks A. A., Mouton J. W., Touw D. J., Heijerman H. G., Danhof M., Bakker W. Population pharmacokinetics of ceftazidime in cystic fibrosis patients analyzed by using a nonparametric algorithm and optimal sampling strategy. Antimicrob Agents Chemother. 1996 May;40(5):1091–1097. doi: 10.1128/aac.40.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weber D. A., Sanders C. C., Bakken J. S., Quinn J. P. A novel chromosomal TEM derivative and alterations in outer membrane proteins together mediate selective ceftazidime resistance in Escherichia coli. J Infect Dis. 1990 Aug;162(2):460–465. doi: 10.1093/infdis/162.2.460. [DOI] [PubMed] [Google Scholar]
  39. Yang Y., Rasmussen B. A., Shlaes D. M. Class A beta-lactamases--enzyme-inhibitor interactions and resistance. Pharmacol Ther. 1999 Aug;83(2):141–151. doi: 10.1016/s0163-7258(99)00027-3. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES