Abstract
The Snf1 protein kinase of the glucose signaling pathway in Saccharomyces cerevisiae is regulated by an autoinhibitory interaction between the regulatory and catalytic domains of Snf1p. Transitions between the autoinhibited and active states are controlled by an upstream kinase and the Reg1p-Glc7p protein phosphatase 1. Previous studies suggested that Snf1 kinase activity is also modulated by Std1p (Msn3p), which interacts physically with Snf1p and also interacts with glucose sensors. Here we address the relationship between Std1p and the Snf1 kinase. Two-hybrid assays showed that Std1p interacts with the catalytic domain of Snf1p, and analysis of mutant kinases suggested that this interaction is incompatible with the autoinhibitory interaction of the regulatory and catalytic domains. Overexpression of Std1p increased the two-hybrid interaction of Snf1p with its activating subunit Snf4p, which is diagnostic of an open, uninhibited conformation of the kinase complex. Overexpression of Std1p elevated Snf1 kinase activity in both in vitro and in vivo assays. These findings suggest that Std1p stimulates the Snf1 kinase by an interaction with the catalytic domain that antagonizes autoinhibition and promotes an active conformation of the kinase.
Full Text
The Full Text of this article is available as a PDF (173.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashrafi K., Lin S. S., Manchester J. K., Gordon J. I. Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev. 2000 Aug 1;14(15):1872–1885. [PMC free article] [PubMed] [Google Scholar]
- Carlson M. Glucose repression in yeast. Curr Opin Microbiol. 1999 Apr;2(2):202–207. doi: 10.1016/S1369-5274(99)80035-6. [DOI] [PubMed] [Google Scholar]
- Celenza J. L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science. 1986 Sep 12;233(4769):1175–1180. doi: 10.1126/science.3526554. [DOI] [PubMed] [Google Scholar]
- Celenza J. L., Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol. 1989 Nov;9(11):5034–5044. doi: 10.1128/mcb.9.11.5034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullen P. J., Sprague G. F., Jr Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13619–13624. doi: 10.1073/pnas.240345197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamo F. J., Lafuente M. J., Gancedo C. The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae. J Bacteriol. 1994 Dec;176(24):7423–7429. doi: 10.1128/jb.176.24.7423-7429.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gancedo J. M. Yeast carbon catabolite repression. Microbiol Mol Biol Rev. 1998 Jun;62(2):334–361. doi: 10.1128/mmbr.62.2.334-361.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganster R. W., Shen W., Schmidt M. C. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein. Mol Cell Biol. 1993 Jun;13(6):3650–3659. doi: 10.1128/mcb.13.6.3650. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardie D. G., Carling D., Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem. 1998;67:821–855. doi: 10.1146/annurev.biochem.67.1.821. [DOI] [PubMed] [Google Scholar]
- Hubbard E. J., Jiang R., Carlson M. Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Mar;14(3):1972–1978. doi: 10.1128/mcb.14.3.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemp B. E., Mitchelhill K. I., Stapleton D., Michell B. J., Chen Z. P., Witters L. A. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci. 1999 Jan;24(1):22–25. doi: 10.1016/s0968-0004(98)01340-1. [DOI] [PubMed] [Google Scholar]
- Kuchin Sergei, Vyas Valmik K., Carlson Marian. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol. 2002 Jun;22(12):3994–4000. doi: 10.1128/MCB.22.12.3994-4000.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafuente M. J., Gancedo C., Jauniaux J. C., Gancedo J. M. Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae. Mol Microbiol. 2000 Jan;35(1):161–172. doi: 10.1046/j.1365-2958.2000.01688.x. [DOI] [PubMed] [Google Scholar]
- McCartney R. R., Schmidt M. C. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem. 2001 Aug 2;276(39):36460–36466. doi: 10.1074/jbc.M104418200. [DOI] [PubMed] [Google Scholar]
- Ozcan S., Freidel K., Leuker A., Ciriacy M. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J Bacteriol. 1993 Sep;175(17):5520–5528. doi: 10.1128/jb.175.17.5520-5528.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanz P., Alms G. R., Haystead T. A., Carlson M. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol. 2000 Feb;20(4):1321–1328. doi: 10.1128/mcb.20.4.1321-1328.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M. C., McCartney R. R., Zhang X., Tillman T. S., Solimeo H., Wölfl S., Almonte C., Watkins S. C. Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Jul;19(7):4561–4571. doi: 10.1128/mcb.19.7.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M. C., McCartney R. R. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. EMBO J. 2000 Sep 15;19(18):4936–4943. doi: 10.1093/emboj/19.18.4936. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulte F., Wieczorke R., Hollenberg C. P., Boles E. The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast. J Bacteriol. 2000 Jan;182(2):540–542. doi: 10.1128/jb.182.2.540-542.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherwood P. W., Carlson M. Mutations in GSF1 and GSF2 alter glucose signaling in Saccharomyces cerevisiae. Genetics. 1997 Oct;147(2):557–566. doi: 10.1093/genetics/147.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirra M. K., Arndt K. M. Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae. Genetics. 1999 May;152(1):73–87. doi: 10.1093/genetics/152.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song W., Carlson M. Srb/mediator proteins interact functionally and physically with transcriptional repressor Sfl1. EMBO J. 1998 Oct 1;17(19):5757–5765. doi: 10.1093/emboj/17.19.5757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tillman T. S., Ganster R. W., Jiang R., Carlson M., Schmidt M. C. STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 1995 Aug 25;23(16):3174–3180. doi: 10.1093/nar/23.16.3174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Treitel M. A., Kuchin S., Carlson M. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol. 1998 Nov;18(11):6273–6280. doi: 10.1128/mcb.18.11.6273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent O., Carlson M. Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. EMBO J. 1999 Dec 1;18(23):6672–6681. doi: 10.1093/emboj/18.23.6672. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W. A., Hawley S. A., Hardie D. G. Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol. 1996 Nov 1;6(11):1426–1434. doi: 10.1016/s0960-9822(96)00747-6. [DOI] [PubMed] [Google Scholar]
- Woods A., Munday M. R., Scott J., Yang X., Carlson M., Carling D. Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem. 1994 Jul 29;269(30):19509–19515. [PubMed] [Google Scholar]
- Yang X., Jiang R., Carlson M. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 1994 Dec 15;13(24):5878–5886. doi: 10.1002/j.1460-2075.1994.tb06933.x. [DOI] [PMC free article] [PubMed] [Google Scholar]