Abstract
We sequenced two maize bacterial artificial chromosome (BAC) clones anchored by the centromere-specific satellite repeat CentC. The two BACs, consisting of approximately 200 kb of cytologically defined centromeric DNA, are composed exclusively of satellite sequences and retrotransposons that can be classified as centromere specific or noncentromere specific on the basis of their distribution in the maize genome. Sequence analysis suggests that the original maize sequences were composed of CentC arrays that were expanded by retrotransposon invasions. Seven centromere-specific retrotransposons of maize (CRM) were found in BAC 16H10. The CRM elements inserted randomly into either CentC monomers or other retrotransposons. Sequence comparisons of the long terminal repeats (LTRs) of individual CRM elements indicated that these elements transposed within the last 1.22 million years. We observed that all of the previously reported centromere-specific retrotransposons in rice and barley, which belong to the same family as the CRM elements, also recently transposed with the oldest element having transposed approximately 3.8 million years ago. Highly conserved sequence motifs were found in the LTRs of the centromere-specific retrotransposons in the grass species, suggesting that the LTRs may be important for the centromere specificity of this retrotransposon family.
Full Text
The Full Text of this article is available as a PDF (462.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananiev E. V., Phillips R. L., Rines H. W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073–13078. doi: 10.1073/pnas.95.22.13073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Aragón-Alcaide L., Miller T., Schwarzacher T., Reader S., Moore G. A cereal centromeric sequence. Chromosoma. 1996 Dec;105(5):261–268. doi: 10.1007/BF02524643. [DOI] [PubMed] [Google Scholar]
- Cheng Zhukuan, Dong Fenggao, Langdon Tim, Ouyang Shu, Buell C. Robin, Gu Minghong, Blattner Frederick R., Jiang Jiming. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002 Aug;14(8):1691–1704. doi: 10.1105/tpc.003079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Csink A. K., Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 1998 May;14(5):200–204. doi: 10.1016/s0168-9525(98)01444-9. [DOI] [PubMed] [Google Scholar]
- Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Francki M. G. Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome. 2001 Apr;44(2):266–274. doi: 10.1139/g00-112. [DOI] [PubMed] [Google Scholar]
- Fransz P. F., Armstrong S., de Jong J. H., Parnell L. D., van Drunen C., Dean C., Zabel P., Bisseling T., Jones G. H. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000 Feb 4;100(3):367–376. doi: 10.1016/s0092-8674(00)80672-8. [DOI] [PubMed] [Google Scholar]
- Gindullis F., Desel C., Galasso I., Schmidt T. The large-scale organization of the centromeric region in Beta species. Genome Res. 2001 Feb;11(2):253–265. doi: 10.1101/gr.162301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrington J. J., Van Bokkelen G., Mays R. W., Gustashaw K., Willard H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet. 1997 Apr;15(4):345–355. doi: 10.1038/ng0497-345. [DOI] [PubMed] [Google Scholar]
- Henning K. A., Novotny E. A., Compton S. T., Guan X. Y., Liu P. P., Ashlock M. A. Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):592–597. doi: 10.1073/pnas.96.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hudakova S., Michalek W., Presting G. G., ten Hoopen R., dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001 Dec 15;29(24):5029–5035. doi: 10.1093/nar/29.24.5029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeno M., Grimes B., Okazaki T., Nakano M., Saitoh K., Hoshino H., McGill N. I., Cooke H., Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998 May;16(5):431–439. doi: 10.1038/nbt0598-431. [DOI] [PubMed] [Google Scholar]
- Jackson S. A., Dong F., Jiang J. Digital mapping of bacterial artificial chromosomes by fluorescence in situ hybridization. Plant J. 1999 Mar;17(5):581–587. doi: 10.1046/j.1365-313x.1999.00398.x. [DOI] [PubMed] [Google Scholar]
- Jiang J., Gill B. S., Wang G. L., Ronald P. C., Ward D. C. Metaphase and interphase fluorescence in situ hybridization mapping of the rice genome with bacterial artificial chromosomes. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4487–4491. doi: 10.1073/pnas.92.10.4487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S., Ward D. C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210–14213. doi: 10.1073/pnas.93.24.14210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaszás E., Birchler J. A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaszás E., Birchler J. A. Misdivision analysis of centromere structure in maize. EMBO J. 1996 Oct 1;15(19):5246–5255. [PMC free article] [PubMed] [Google Scholar]
- Kellogg E. A. Evolutionary history of the grasses. Plant Physiol. 2001 Mar;125(3):1198–1205. doi: 10.1104/pp.125.3.1198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumekawa N., Hosouchi T., Tsuruoka H., Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001 Dec 31;8(6):285–290. doi: 10.1093/dnares/8.6.285. [DOI] [PubMed] [Google Scholar]
- Langdon T., Seago C., Mende M., Leggett M., Thomas H., Forster J. W., Jones R. N., Jenkins G. Retrotransposon evolution in diverse plant genomes. Genetics. 2000 Sep;156(1):313–325. doi: 10.1093/genetics/156.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagaki K., Tsujimoto H., Sasakuma T. A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res. 1998 Jun;6(4):295–302. doi: 10.1023/a:1009270824142. [DOI] [PubMed] [Google Scholar]
- Nizetic D., Drmanac R., Lehrach H. An improved bacterial colony lysis procedure enables direct DNA hybridisation using short (10, 11 bases) oligonucleotides to cosmids. Nucleic Acids Res. 1991 Jan 11;19(1):182–182. doi: 10.1093/nar/19.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonomura K. I., Kurata N. Organization of the 1.9-kb repeat unit RCE1 in the centromeric region of rice chromosomes. Mol Gen Genet. 1999 Feb;261(1):1–10. doi: 10.1007/s004380050935. [DOI] [PubMed] [Google Scholar]
- Nonomura K., Kurata N. The centromere composition of multiple repetitive sequences on rice chromosome 5. Chromosoma. 2001 Aug;110(4):284–291. doi: 10.1007/s004120100148. [DOI] [PubMed] [Google Scholar]
- Page B. T., Wanous M. K., Birchler J. A. Characterization of a maize chromosome 4 centromeric sequence: evidence for an evolutionary relationship with the B chromosome centromere. Genetics. 2001 Sep;159(1):291–302. doi: 10.1093/genetics/159.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presting G. G., Malysheva L., Fuchs J., Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998 Dec;16(6):721–728. doi: 10.1046/j.1365-313x.1998.00341.x. [DOI] [PubMed] [Google Scholar]
- Round E. K., Flowers S. K., Richards E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 1997 Nov;7(11):1045–1053. doi: 10.1101/gr.7.11.1045. [DOI] [PubMed] [Google Scholar]
- SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
- Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794–8797. doi: 10.1073/pnas.89.18.8794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Song J., Dong F., Jiang J. Construction of a bacterial artificial chromosome (BAC) library for potato molecular cytogenetics research. Genome. 2000 Feb;43(1):199–204. [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuan Q., Hill J., Hsiao J., Moffat K., Ouyang S., Cheng Z., Jiang J., Buell C. R. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol Genet Genomics. 2002 Jun 27;267(6):713–720. doi: 10.1007/s00438-002-0706-1. [DOI] [PubMed] [Google Scholar]
- Zhong Cathy Xiaoyan, Marshall Joshua B., Topp Christopher, Mroczek Rebecca, Kato Akio, Nagaki Kiyotaka, Birchler James A., Jiang Jiming, Dawe R. Kelly. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002 Nov;14(11):2825–2836. doi: 10.1105/tpc.006106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Qi, Yuan Chaoshen, Wei Tzuping, Kummerow Fred A. Effect of low magnesium concentration and cholestane-3beta, 5alpha, 6beta-triol on levels of LDL receptor in cultured fibroblasts. Magnes Res. 2002 Mar;15(1-2):3–10. [PubMed] [Google Scholar]