Abstract
Triple helices containing C+xGxC triplets are destabilised at physiological pH due to the requirement for base protonation of 2'-deoxycytidine (dC), which has a pKa of 4.3. The C nucleoside 2-amino-5-(2'-deoxy-beta-D-ribofuranosyl)pyridine (beta-AP) is structurally analogous to dC but is considerably more basic, with a pKa of 5.93. We have synthesised 5'-psoralen linked oligodeoxyribonucleotides (ODNs) containing thymidine (dT) and either beta-AP or its alpha-anomer (alpha-AP) and have assessed their ability to form triplexes with a double-stranded target derived from standard deoxynucleotides (i.e. beta-anomers). Third strand ODNs derived from dT and beta-AP were found to have considerably higher binding affinities for the target than the corresponding ODNs derived from dT and either dC or 5-methyl-2'-deoxycytidine (5-Me-dC). ODNs containing dT and alpha-AP also showed enhanced triplex formation with the duplex target and, in addition are more stable in serum-containing medium than standard oligopyrimidine-derived ODNs or ODNs derived from dT and beta-AP. Molecular modelling studies showed that an alpha-anomeric AP nucleotide can be accommodated within an otherwise beta-anomeric triplex with only minor perturbation of the triplex structure. Molecular dynamics (MD) simulations on triplexes containing either the alpha- or beta-anomer of (N1-protonated) AP showed that in both cases the base retained two standard hydrogen bonds to its associated guanine when the 'A-type' model of the triplex was used as the start-point for the simulation, but that bifurcated hydrogen bonds resulted when the alternative 'B-type' triplex model was used. The lack of a differential stability between alpha-AP- and beta-AP-containing triplexes at pH >7, predicted from the behaviour of the B-type models, suggests that the A-type models are more appropriate.
Full Text
The Full Text of this article is available as a PDF (225.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnott S., Bond P. J., Selsing E., Smith P. J. Models of triple-stranded polynucleotides with optimised stereochemistry. Nucleic Acids Res. 1976 Oct;3(10):2459–2470. doi: 10.1093/nar/3.10.2459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnott S., Selsing E. Structures for the polynucleotide complexes poly(dA) with poly (dT) and poly(dT) with poly(dA) with poly (dT). J Mol Biol. 1974 Sep 15;88(2):509–521. doi: 10.1016/0022-2836(74)90498-7. [DOI] [PubMed] [Google Scholar]
- Bates P. J., Dosanjh H. S., Kumar S., Jenkins T. C., Laughton C. A., Neidle S. Detection and kinetic studies of triplex formation by oligodeoxynucleotides using real-time biomolecular interaction analysis (BIA). Nucleic Acids Res. 1995 Sep 25;23(18):3627–3632. doi: 10.1093/nar/23.18.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bates P. J., Macaulay V. M., McLean M. J., Jenkins T. C., Reszka A. P., Laughton C. A., Neidle S. Characteristics of triplex-directed photoadduct formation by psoralen-linked oligodeoxynucleotides. Nucleic Acids Res. 1995 Nov 11;23(21):4283–4289. doi: 10.1093/nar/23.21.4283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beal P. A., Dervan P. B. Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science. 1991 Mar 15;251(4999):1360–1363. doi: 10.1126/science.2003222. [DOI] [PubMed] [Google Scholar]
- Boiziau C., Debart F., Rayner B., Imbach J. L., Toulme J. J. Chimeric alpha-beta oligonucleotides as antisense inhibitors of reverse transcription. FEBS Lett. 1995 Mar 13;361(1):41–45. doi: 10.1016/0014-5793(95)00138-y. [DOI] [PubMed] [Google Scholar]
- Havre P. A., Gunther E. J., Gasparro F. P., Glazer P. M. Targeted mutagenesis of DNA using triple helix-forming oligonucleotides linked to psoralen. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7879–7883. doi: 10.1073/pnas.90.16.7879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jetter M. C., Hobbs F. W. 7,8-Dihydro-8-oxoadenine as a replacement for cytosine in the third strand of triple helices. Triplex formation without hypochromicity. Biochemistry. 1993 Apr 6;32(13):3249–3254. doi: 10.1021/bi00064a006. [DOI] [PubMed] [Google Scholar]
- Krawczyk S. H., Milligan J. F., Wadwani S., Moulds C., Froehler B. C., Matteucci M. D. Oligonucleotide-mediated triple helix formation using an N3-protonated deoxycytidine analog exhibiting pH-independent binding within the physiological range. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3761–3764. doi: 10.1073/pnas.89.9.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laughton C. A., Neidle S. Molecular dynamics simulation of the DNA triplex d(TC)5.d(GA)5.d(C+T)5. J Mol Biol. 1992 Jan 20;223(2):519–529. doi: 10.1016/0022-2836(92)90667-9. [DOI] [PubMed] [Google Scholar]
- Laughton C. A., Neidle S. Prediction of the structure of the Y+.R-.R(+)-type DNA triple helix by molecular modelling. Nucleic Acids Res. 1992 Dec 25;20(24):6535–6541. doi: 10.1093/nar/20.24.6535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liquier J., Letellier R., Dagneaux C., Ouali M., Morvan F., Raynier B., Imbach J. L., Taillandier E. Triple helix formation by alpha-oligodeoxynucleotides: a vibrational spectroscopy and molecular modeling study. Biochemistry. 1993 Oct 12;32(40):10591–10598. doi: 10.1021/bi00091a008. [DOI] [PubMed] [Google Scholar]
- Macaulay V. M., Bates P. J., McLean M. J., Rowlands M. G., Jenkins T. C., Ashworth A., Neidle S. Inhibition of aromatase expression by a psoralen-linked triplex-forming oligonucleotide targeted to a coding sequence. FEBS Lett. 1995 Sep 25;372(2-3):222–228. doi: 10.1016/0014-5793(95)00987-k. [DOI] [PubMed] [Google Scholar]
- Macaya R., Wang E., Schultze P., Sklenár V., Feigon J. Proton nuclear magnetic resonance assignments and structural characterization of an intramolecular DNA triplex. J Mol Biol. 1992 Jun 5;225(3):755–773. doi: 10.1016/0022-2836(92)90399-5. [DOI] [PubMed] [Google Scholar]
- Noonberg S. B., François J. C., Praseuth D., Guieysse-Peugeot A. L., Lacoste J., Garestier T., Hélène C. Triplex formation with alpha anomers of purine-rich and pyrimidine-rich oligodeoxynucleotides. Nucleic Acids Res. 1995 Oct 25;23(20):4042–4049. doi: 10.1093/nar/23.20.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojwang J., Okleberry K. M., Marshall H. B., Vu H. M., Huffman J. H., Rando R. F. Inhibition of Friend murine leukemia virus activity by guanosine/thymidine oligonucleotides. Antiviral Res. 1994 Sep;25(1):27–41. doi: 10.1016/0166-3542(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Olivas W. M., Maher L. J., 3rd Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry. 1995 Jan 10;34(1):278–284. doi: 10.1021/bi00001a034. [DOI] [PubMed] [Google Scholar]
- Orozco M., Laughton C. A., Herzyk P., Neidle S. Molecular-mechanics modelling of drug-DNA structures; the effects of differing dielectric treatment on helix parameters and comparison with a fully solvated structural model. J Biomol Struct Dyn. 1990 Oct;8(2):359–373. doi: 10.1080/07391102.1990.10507810. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., Patel D. J. DNA triplexes: solution structures, hydration sites, energetics, interactions, and function. Biochemistry. 1994 Sep 27;33(38):11405–11416. doi: 10.1021/bi00204a001. [DOI] [PubMed] [Google Scholar]
- Radhakrishnan I., Patel D. J., Gao X. Three-dimensional homonuclear NOESY-TOCSY of an intramolecular pyrimidine.purine.pyrimidine DNA triplex containing a central G.TA triple: nonexchangeable proton assignments and structural implications. Biochemistry. 1992 Mar 10;31(9):2514–2523. doi: 10.1021/bi00124a011. [DOI] [PubMed] [Google Scholar]
- Raghunathan G., Miles H. T., Sasisekharan V. Symmetry and molecular structure of a DNA triple helix: d(T)n.d(A)n.d(T)n. Biochemistry. 1993 Jan 19;32(2):455–462. doi: 10.1021/bi00053a009. [DOI] [PubMed] [Google Scholar]
- Rando R. F., Ojwang J., Elbaggari A., Reyes G. R., Tinder R., McGrath M. S., Hogan M. E. Suppression of human immunodeficiency virus type 1 activity in vitro by oligonucleotides which form intramolecular tetrads. J Biol Chem. 1995 Jan 27;270(4):1754–1760. doi: 10.1074/jbc.270.4.1754. [DOI] [PubMed] [Google Scholar]
- Strobel S. A., Dervan P. B. Single-site enzymatic cleavage of yeast genomic DNA mediated by triple helix formation. Nature. 1991 Mar 14;350(6314):172–174. doi: 10.1038/350172a0. [DOI] [PubMed] [Google Scholar]
- Sun J. S., François J. C., Montenay-Garestier T., Saison-Behmoaras T., Roig V., Thuong N. T., Hélène C. Sequence-specific intercalating agents: intercalation at specific sequences on duplex DNA via major groove recognition by oligonucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9198–9202. doi: 10.1073/pnas.86.23.9198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sun J. S., Giovannangeli C., François J. C., Kurfurst R., Montenay-Garestier T., Asseline U., Saison-Behmoaras T., Thuong N. T., Hélène C. Triple-helix formation by alpha oligodeoxynucleotides and alpha oligodeoxynucleotide-intercalator conjugates. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6023–6027. doi: 10.1073/pnas.88.14.6023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thenet S., Morvan F., Bertrand J. R., Gautie C., Malvy C. Alpha are more stable than beta anomer oligonucleotides in 3T3 cellular extracts. Biochimie. 1988 Dec;70(12):1729–1732. doi: 10.1016/0300-9084(88)90031-4. [DOI] [PubMed] [Google Scholar]
- Vichier-Guerre S., Pompon A., Lefebvre I., Imbach J. L. New insights into the resistance of alpha-oligonucleotides to nucleases. Antisense Res Dev. 1994 Spring;4(1):9–18. doi: 10.1089/ard.1994.4.9. [DOI] [PubMed] [Google Scholar]
- Wang G., Levy D. D., Seidman M. M., Glazer P. M. Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation. Mol Cell Biol. 1995 Mar;15(3):1759–1768. doi: 10.1128/mcb.15.3.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Q., Tsukahara S., Yamakawa H., Takai K., Takaku H. pH-independent inhibition of restriction endonuclease cleavage via triple helix formation by oligonucleotides containing 8-oxo-2'-deoxyadenosine. FEBS Lett. 1994 Nov 21;355(1):11–14. doi: 10.1016/0014-5793(94)01139-7. [DOI] [PubMed] [Google Scholar]
- Xodo L. E., Manzini G., Quadrifoglio F., van der Marel G. A., van Boom J. H. Effect of 5-methylcytosine on the stability of triple-stranded DNA--a thermodynamic study. Nucleic Acids Res. 1991 Oct 25;19(20):5625–5631. doi: 10.1093/nar/19.20.5625. [DOI] [PMC free article] [PubMed] [Google Scholar]