Skip to main content
Genetics logoLink to Genetics
. 2003 Feb;163(2):515–526. doi: 10.1093/genetics/163.2.515

MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae.

Eva R Hoffmann 1, Polina V Shcherbakova 1, Thomas A Kunkel 1, Rhona H Borts 1
PMCID: PMC1462462  PMID: 12618391

Abstract

To test whether missense mutations in the cancer susceptibility gene MLH1 adversely affect meiosis, we examined 14 yeast MLH1 mutations for effects on meiotic DNA transactions and gamete viability in the yeast Saccharomyces cerevisiae. Mutations analogous to those associated with hereditary nonpolyposis colorectal cancer (HNPCC) or those that reduce Mlh1p interactions with ATP or DNA all impair replicative mismatch repair as measured by increased mutation rates. However, their effects on meiotic heteroduplex repair, crossing over, chromosome segregation, and gametogenesis vary from complete loss of meiotic functions to no meiotic defect, and mutants defective in one meiotic process are not necessarily defective in others. DNA binding and ATP binding but not ATP hydrolysis are required for meiotic crossing over. The results reveal clear separation of different Mlh1p functions in mitosis and meiosis, and they suggest that some, but not all, MLH1 mutations may be a source of human infertility.

Full Text

The Full Text of this article is available as a PDF (222.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Reenan R. A., Kolodner R. D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics. 1994 May;137(1):19–39. doi: 10.1093/genetics/137.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson L. K., Reeves A., Webb L. M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999 Apr;151(4):1569–1579. doi: 10.1093/genetics/151.4.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Argueso Juan Lucas, Kijas Amanda Wraith, Sarin Sumeet, Heck Julie, Waase Marc, Alani Eric. Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol Cell Biol. 2003 Feb;23(3):873–886. doi: 10.1128/MCB.23.3.873-886.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker S. M., Plug A. W., Prolla T. A., Bronner C. E., Harris A. C., Yao X., Christie D. M., Monell C., Arnheim N., Bradley A. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet. 1996 Jul;13(3):336–342. doi: 10.1038/ng0796-336. [DOI] [PubMed] [Google Scholar]
  5. Ban C., Junop M., Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell. 1999 Apr 2;97(1):85–97. doi: 10.1016/s0092-8674(00)80717-5. [DOI] [PubMed] [Google Scholar]
  6. Ban C., Yang W. Structural basis for MutH activation in E.coli mismatch repair and relationship of MutH to restriction endonucleases. EMBO J. 1998 Mar 2;17(5):1526–1534. doi: 10.1093/emboj/17.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barlow A. L., Hultén M. A. Crossing over analysis at pachytene in man. Eur J Hum Genet. 1998 Jul-Aug;6(4):350–358. doi: 10.1038/sj.ejhg.5200200. [DOI] [PubMed] [Google Scholar]
  8. Borts R. H., Chambers S. R., Abdullah M. F. The many faces of mismatch repair in meiosis. Mutat Res. 2000 Jun 30;451(1-2):129–150. doi: 10.1016/s0027-5107(00)00044-0. [DOI] [PubMed] [Google Scholar]
  9. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Carpenter A. T. Chiasma function. Cell. 1994 Jul 1;77(7):957–962. doi: 10.1016/0092-8674(94)90434-0. [DOI] [PubMed] [Google Scholar]
  11. Cohen P. E., Pollard J. W. Regulation of meiotic recombination and prophase I progression in mammals. Bioessays. 2001 Nov;23(11):996–1009. doi: 10.1002/bies.1145. [DOI] [PubMed] [Google Scholar]
  12. Edelmann W., Cohen P. E., Kane M., Lau K., Morrow B., Bennett S., Umar A., Kunkel T., Cattoretti G., Chaganti R. Meiotic pachytene arrest in MLH1-deficient mice. Cell. 1996 Jun 28;85(7):1125–1134. doi: 10.1016/s0092-8674(00)81312-4. [DOI] [PubMed] [Google Scholar]
  13. Edelmann W., Cohen P. E., Kneitz B., Winand N., Lia M., Heyer J., Kolodner R., Pollard J. W., Kucherlapati R. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet. 1999 Jan;21(1):123–127. doi: 10.1038/5075. [DOI] [PubMed] [Google Scholar]
  14. Erdeniz N., Mortensen U. H., Rothstein R. Cloning-free PCR-based allele replacement methods. Genome Res. 1997 Dec;7(12):1174–1183. doi: 10.1101/gr.7.12.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilbertson L. A., Stahl F. W. A test of the double-strand break repair model for meiotic recombination in Saccharomyces cerevisiae. Genetics. 1996 Sep;144(1):27–41. doi: 10.1093/genetics/144.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guarné A., Junop M. S., Yang W. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J. 2001 Oct 1;20(19):5521–5531. doi: 10.1093/emboj/20.19.5521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall M. C., Jordan J. R., Matson S. W. Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J. 1998 Mar 2;17(5):1535–1541. doi: 10.1093/emboj/17.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hall Mark C., Shcherbakova Polina V., Kunkel Thomas A. Differential ATP binding and intrinsic ATP hydrolysis by amino-terminal domains of the yeast Mlh1 and Pms1 proteins. J Biol Chem. 2001 Nov 20;277(5):3673–3679. doi: 10.1074/jbc.M106120200. [DOI] [PubMed] [Google Scholar]
  19. Harfe B. D., Jinks-Robertson S. DNA mismatch repair and genetic instability. Annu Rev Genet. 2000;34:359–399. doi: 10.1146/annurev.genet.34.1.359. [DOI] [PubMed] [Google Scholar]
  20. Hollingsworth N. M., Ponte L., Halsey C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev. 1995 Jul 15;9(14):1728–1739. doi: 10.1101/gad.9.14.1728. [DOI] [PubMed] [Google Scholar]
  21. Hunter N., Borts R. H. Mlh1 is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes Dev. 1997 Jun 15;11(12):1573–1582. doi: 10.1101/gad.11.12.1573. [DOI] [PubMed] [Google Scholar]
  22. Jäger A. C., Rasmussen M., Bisgaard H. C., Singh K. K., Nielsen F. C., Rasmussen L. J. HNPCC mutations in the human DNA mismatch repair gene hMLH1 influence assembly of hMutLalpha and hMLH1-hEXO1 complexes. Oncogene. 2001 Jun 14;20(27):3590–3595. doi: 10.1038/sj.onc.1204467. [DOI] [PubMed] [Google Scholar]
  23. Khazanehdari K. A., Borts R. H. EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma. 2000;109(1-2):94–102. doi: 10.1007/s004120050416. [DOI] [PubMed] [Google Scholar]
  24. Kirkpatrick D. T., Ferguson J. R., Petes T. D., Symington L. S. Decreased meiotic intergenic recombination and increased meiosis I nondisjunction in exo1 mutants of Saccharomyces cerevisiae. Genetics. 2000 Dec;156(4):1549–1557. doi: 10.1093/genetics/156.4.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kneitz B., Cohen P. E., Avdievich E., Zhu L., Kane M. F., Hou H., Jr, Kolodner R. D., Kucherlapati R., Pollard J. W., Edelmann W. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000 May 1;14(9):1085–1097. [PMC free article] [PubMed] [Google Scholar]
  26. Langland G., Kordich J., Creaney J., Goss K. H., Lillard-Wetherell K., Bebenek K., Kunkel T. A., Groden J. The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J Biol Chem. 2001 Apr 26;276(32):30031–30035. doi: 10.1074/jbc.M009664200. [DOI] [PubMed] [Google Scholar]
  27. Lipkin Steven M., Moens Peter B., Wang Victoria, Lenzi Michelle, Shanmugarajah Dakshine, Gilgeous Abigail, Thomas James, Cheng Jun, Touchman Jeffrey W., Green Eric D. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet. 2002 Jul 1;31(4):385–390. doi: 10.1038/ng931. [DOI] [PubMed] [Google Scholar]
  28. Pang Q., Prolla T. A., Liskay R. M. Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol. 1997 Aug;17(8):4465–4473. doi: 10.1128/mcb.17.8.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pedrazzi G., Perrera C., Blaser H., Kuster P., Marra G., Davies S. L., Ryu G. H., Freire R., Hickson I. D., Jiricny J. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res. 2001 Nov 1;29(21):4378–4386. doi: 10.1093/nar/29.21.4378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Peltomäki P. DNA mismatch repair and cancer. Mutat Res. 2001 Mar;488(1):77–85. doi: 10.1016/s1383-5742(00)00058-2. [DOI] [PubMed] [Google Scholar]
  31. Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Prolla T. A., Christie D. M., Liskay R. M. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol. 1994 Jan;14(1):407–415. doi: 10.1128/mcb.14.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reenan R. A., Kolodner R. D. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics. 1992 Dec;132(4):975–985. doi: 10.1093/genetics/132.4.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ross-Macdonald P., Roeder G. S. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell. 1994 Dec 16;79(6):1069–1080. doi: 10.1016/0092-8674(94)90037-x. [DOI] [PubMed] [Google Scholar]
  35. Santucci-Darmanin S., Walpita D., Lespinasse F., Desnuelle C., Ashley T., Paquis-Flucklinger V. MSH4 acts in conjunction with MLH1 during mammalian meiosis. FASEB J. 2000 Aug;14(11):1539–1547. doi: 10.1096/fj.14.11.1539. [DOI] [PubMed] [Google Scholar]
  36. Santucci-Darmanin Sabine, Neyton Sophie, Lespinasse Françoise, Saunières Anne, Gaudray Patrick, Paquis-Flucklinger Véronique. The DNA mismatch-repair MLH3 protein interacts with MSH4 in meiotic cells, supporting a role for this MutL homolog in mammalian meiotic recombination. Hum Mol Genet. 2002 Jul 15;11(15):1697–1706. doi: 10.1093/hmg/11.15.1697. [DOI] [PubMed] [Google Scholar]
  37. Shcherbakova P. V., Kunkel T. A. Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol. 1999 Apr;19(4):3177–3183. doi: 10.1128/mcb.19.4.3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sokolsky T., Alani E. EXO1 and MSH6 are high-copy suppressors of conditional mutations in the MSH2 mismatch repair gene of Saccharomyces cerevisiae. Genetics. 2000 Jun;155(2):589–599. doi: 10.1093/genetics/155.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Spampinato C., Modrich P. The MutL ATPase is required for mismatch repair. J Biol Chem. 2000 Mar 31;275(13):9863–9869. doi: 10.1074/jbc.275.13.9863. [DOI] [PubMed] [Google Scholar]
  40. Stahl F. W., Lande R. Estimating interference and linkage map distance from two-factor tetrad data. Genetics. 1995 Mar;139(3):1449–1454. doi: 10.1093/genetics/139.3.1449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tishkoff D. X., Boerger A. L., Bertrand P., Filosi N., Gaida G. M., Kane M. F., Kolodner R. D. Identification and characterization of Saccharomyces cerevisiae EXO1, a gene encoding an exonuclease that interacts with MSH2. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7487–7492. doi: 10.1073/pnas.94.14.7487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tran H. T., Keen J. D., Kricker M., Resnick M. A., Gordenin D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997 May;17(5):2859–2865. doi: 10.1128/mcb.17.5.2859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tran P. T., Liskay R. M. Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol. 2000 Sep;20(17):6390–6398. doi: 10.1128/mcb.20.17.6390-6398.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tran P. T., Simon J. A., Liskay R. M. Interactions of Exo1p with components of MutLalpha in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2001 Jul 31;98(17):9760–9765. doi: 10.1073/pnas.161175998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]
  46. Wang T. F., Kleckner N., Hunter N. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13914–13919. doi: 10.1073/pnas.96.24.13914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wang Ting-Fang, Kung Wen-Mei. Supercomplex formation between Mlh1-Mlh3 and Sgs1-Top3 heterocomplexes in meiotic yeast cells. Biochem Biophys Res Commun. 2002 Aug 30;296(4):949–953. doi: 10.1016/s0006-291x(02)02034-x. [DOI] [PubMed] [Google Scholar]
  48. Yuan Zi Qiang, Gottlieb Bruce, Beitel Lenore K., Wong Nora, Gordon Philip H., Wang Qing, Puisieux Alain, Foulkes William D., Trifiro Mark. Polymorphisms and HNPCC: PMS2-MLH1 protein interactions diminished by single nucleotide polymorphisms. Hum Mutat. 2002 Feb;19(2):108–113. doi: 10.1002/humu.10040. [DOI] [PubMed] [Google Scholar]
  49. Zalevsky J., MacQueen A. J., Duffy J. B., Kemphues K. J., Villeneuve A. M. Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics. 1999 Nov;153(3):1271–1283. doi: 10.1093/genetics/153.3.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES