Abstract
Modified single-stranded DNA oligonucleotides have been used to direct base changes in the CYC1 gene of Saccharomyces cerevisiae. In this process, the oligonucleotide is believed to hybridize to the target site through the action of a DNA recombinase and, once bound, DNA repair enzymes act to excise the nucleotide, replace it, and revert the gene to wild-type status. Nucleotide exchange exhibits a strand bias as, in most cases, a higher level of base reversal appears in cells in which the oligonucleotide is designed to hybridize to the nontemplate strand. But, in one case, a higher level was observed when an oligonucleotide complementary to the transcribed strand was used. Mutant haploid and diploid strains are reverted to wild type at this locus with approximately the same frequency and all strains take up the oligonucleotide with approximately equal efficiency. Some repair preference for certain base mismatches was observed; for example, T/T and C/C mispairs exhibited the highest degree of reactivity. Finally, we demonstrate that proteins involved in DNA pairing can enhance the repair activity up to 22-fold, while others affect the reaction minimally. Taken together, these results confirm the importance and versatility of yeast as a model system to elucidate the factors regulating the frequency of nucleotide exchange directed by oligonucleotides.
Full Text
The Full Text of this article is available as a PDF (328.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bandyopadhyay P., Kren B. T., Ma X., Steer C. J. Enhanced gene transfer into HuH-7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine. Biotechniques. 1998 Aug;25(2):282-4, 286-92. doi: 10.2144/98252gt03. [DOI] [PubMed] [Google Scholar]
- Bashkirov V. I., King J. S., Bashkirova E. V., Schmuckli-Maurer J., Heyer W. D. DNA repair protein Rad55 is a terminal substrate of the DNA damage checkpoints. Mol Cell Biol. 2000 Jun;20(12):4393–4404. doi: 10.1128/mcb.20.12.4393-4404.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belotserkovskii B. P., Reddy G., Zarling D. A. DNA hybrids stabilized by heterologies. Biochemistry. 1999 Aug 17;38(33):10785–10792. doi: 10.1021/bi990699p. [DOI] [PubMed] [Google Scholar]
- Bishop D. K., Andersen J., Kolodner R. D. Specificity of mismatch repair following transformation of Saccharomyces cerevisiae with heteroduplex plasmid DNA. Proc Natl Acad Sci U S A. 1989 May;86(10):3713–3717. doi: 10.1073/pnas.86.10.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brachman Erin E., Kmiec Eric B. The 'biased' evolution of targeted gene repair. Curr Opin Mol Ther. 2002 Apr;4(2):171–176. [PubMed] [Google Scholar]
- Brown T., Hunter W. N., Kneale G., Kennard O. Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2402–2406. doi: 10.1073/pnas.83.8.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole-Strauss A., Gamper H., Holloman W. K., Muñoz M., Cheng N., Kmiec E. B. Targeted gene repair directed by the chimeric RNA/DNA oligonucleotide in a mammalian cell-free extract. Nucleic Acids Res. 1999 Mar 1;27(5):1323–1330. doi: 10.1093/nar/27.5.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornelis A. G., Haasnoot J. H., den Hartog J. F., de Rooij M., van Boom J. H., Cornelis A. Local destabilisation of a DNA double helix by a T--T wobble pair. Nature. 1979 Sep 20;281(5728):235–236. doi: 10.1038/281235a0. [DOI] [PubMed] [Google Scholar]
- Danhash N., Gardner D. C., Oliver S. G. Heritable damage to yeast caused by transformation. Biotechnology (N Y) 1991 Feb;9(2):179–182. doi: 10.1038/nbt0291-179. [DOI] [PubMed] [Google Scholar]
- Ellis H. M., Yu D., DiTizio T., Court D. L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A. 2001 May 29;98(12):6742–6746. doi: 10.1073/pnas.121164898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gamper H. B., Hou Y. M., Kmiec E. B. Evidence for a four-strand exchange catalyzed by the RecA protein. Biochemistry. 2000 Dec 12;39(49):15272–15281. doi: 10.1021/bi001704o. [DOI] [PubMed] [Google Scholar]
- Gamper H. B., Jr, Cole-Strauss A., Metz R., Parekh H., Kumar R., Kmiec E. B. A plausible mechanism for gene correction by chimeric oligonucleotides. Biochemistry. 2000 May 16;39(19):5808–5816. doi: 10.1021/bi9921891. [DOI] [PubMed] [Google Scholar]
- Gamper H. B., Parekh H., Rice M. C., Bruner M., Youkey H., Kmiec E. B. The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res. 2000 Nov 1;28(21):4332–4339. doi: 10.1093/nar/28.21.4332. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampsey M. A tester system for detecting each of the six base-pair substitutions in Saccharomyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome c. Genetics. 1991 May;128(1):59–67. doi: 10.1093/genetics/128.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hare D., Shapiro L., Patel D. J. Extrahelical adenosine stacks into right-handed DNA: solution conformation of the d(C-G-C-A-G-A-G-C-T-C-G-C-G) duplex deduced from distance geometry analysis of nuclear Overhauser effect spectra. Biochemistry. 1986 Nov 18;25(23):7456–7464. doi: 10.1021/bi00371a030. [DOI] [PubMed] [Google Scholar]
- Ho P. S., Frederick C. A., Quigley G. J., van der Marel G. A., van Boom J. H., Wang A. H., Rich A. G.T wobble base-pairing in Z-DNA at 1.0 A atomic resolution: the crystal structure of d(CGCGTG). EMBO J. 1985 Dec 16;4(13A):3617–3623. doi: 10.1002/j.1460-2075.1985.tb04125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kagawa W., Kurumizaka H., Ikawa S., Yokoyama S., Shibata T. Homologous pairing promoted by the human Rad52 protein. J Biol Chem. 2001 Jul 13;276(37):35201–35208. doi: 10.1074/jbc.M104938200. [DOI] [PubMed] [Google Scholar]
- Kmiec E., Holloman W. K. Beta protein of bacteriophage lambda promotes renaturation of DNA. J Biol Chem. 1981 Dec 25;256(24):12636–12639. [PubMed] [Google Scholar]
- Krejci L., Damborsky J., Thomsen B., Duno M., Bendixen C. Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol. 2001 Feb;21(3):966–976. doi: 10.1128/MCB.21.3.966-976.2001. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Leung W., Malkova A., Haber J. E. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6851–6856. doi: 10.1073/pnas.94.13.6851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L., Rice M. C., Kmiec E. B. In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 2001 Oct 15;29(20):4238–4250. doi: 10.1093/nar/29.20.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghuraman M. K., Winzeler E. A., Collingwood D., Hunt S., Wodicka L., Conway A., Lockhart D. J., Davis R. W., Brewer B. J., Fangman W. L. Replication dynamics of the yeast genome. Science. 2001 Oct 5;294(5540):115–121. doi: 10.1126/science.294.5540.115. [DOI] [PubMed] [Google Scholar]
- Rice M. C., Bruner M., Czymmek K., Kmiec E. B. In vitro and in vivo nucleotide exchange directed by chimeric RNA/DNA oligonucleotides in Saccharomyces cerevisae. Mol Microbiol. 2001 May;40(4):857–868. doi: 10.1046/j.1365-2958.2001.02407.x. [DOI] [PubMed] [Google Scholar]
- Storici F., Lewis L. K., Resnick M. A. In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001 Aug;19(8):773–776. doi: 10.1038/90837. [DOI] [PubMed] [Google Scholar]
- Werntges H., Steger G., Riesner D., Fritz H. J. Mismatches in DNA double strands: thermodynamic parameters and their correlation to repair efficiencies. Nucleic Acids Res. 1986 May 12;14(9):3773–3790. doi: 10.1093/nar/14.9.3773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wyrick J. J., Aparicio J. G., Chen T., Barnett J. D., Jennings E. G., Young R. A., Bell S. P., Aparicio O. M. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science. 2001 Dec 14;294(5550):2357–2360. doi: 10.1126/science.1066101. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Moerschell R. P., Wakem L. P., Ferguson D., Sherman F. Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast. 1992 Nov;8(11):935–948. doi: 10.1002/yea.320081104. [DOI] [PubMed] [Google Scholar]
- Yamamoto T., Moerschell R. P., Wakem L. P., Komar-Panicucci S., Sherman F. Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics. 1992 Aug;131(4):811–819. doi: 10.1093/genetics/131.4.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978–5983. doi: 10.1073/pnas.100127597. [DOI] [PMC free article] [PubMed] [Google Scholar]