Abstract
There is increasing evidence that defects in DNA double-strand-break (DSB) repair can cause chromosome instability, which may result in cancer. To identify novel DSB repair genes in mice, we performed a phenotype-driven mutagenesis screen for chromosome instability mutants using a flow cytometric peripheral blood micronucleus assay. Micronucleus levels were used as a quantitative indicator of chromosome damage in vivo. Among offspring derived from males mutagenized with the germline mutagen N-ethyl-N-nitrosourea (ENU), we identified a recessive mutation conferring elevated levels of spontaneous and radiation- or mitomycin C-induced micronuclei. This mutation, named chaos1 (chromosome aberration occurring spontaneously 1), was genetically mapped to a 1.3-Mb interval on chromosome 16 containing Polq, encoding DNA polymerase theta. We identified a nonconservative mutation in the ENU-derived allele, making it a strong candidate for chaos1. POLQ is homologous to Drosophila MUS308, which is essential for normal DNA interstrand crosslink repair and is unique in that it contains both a helicase and a DNA polymerase domain. While cancer susceptibility of chaos1 mutant mice is still under investigation, these data provide a practical paradigm for using a forward genetic approach to discover new potential cancer susceptibility genes using the surrogate biomarker of chromosome instability as a screen.
Full Text
The Full Text of this article is available as a PDF (237.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aguirrezabalaga I., Sierra L. M., Comendador M. A. The hypermutability conferred by the mus308 mutation of Drosophila is not specific for cross-linking agents. Mutat Res. 1995 May;336(3):243–250. doi: 10.1016/0921-8777(94)00057-d. [DOI] [PubMed] [Google Scholar]
- Boyd J. B., Golino M. D., Shaw K. E., Osgood C. J., Green M. M. Third-chromosome mutagen-sensitive mutants of Drosophila melanogaster. Genetics. 1981 Mar-Apr;97(3-4):607–623. doi: 10.1093/genetics/97.3-4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd J. B., Sakaguchi K., Harris P. V. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics. 1990 Aug;125(4):813–819. doi: 10.1093/genetics/125.4.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng N. C., van de Vrugt H. J., van der Valk M. A., Oostra A. B., Krimpenfort P., de Vries Y., Joenje H., Berns A., Arwert F. Mice with a targeted disruption of the Fanconi anemia homolog Fanca. Hum Mol Genet. 2000 Jul 22;9(12):1805–1811. doi: 10.1093/hmg/9.12.1805. [DOI] [PubMed] [Google Scholar]
- Deng C. X., Scott F. Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene. 2000 Feb 21;19(8):1059–1064. doi: 10.1038/sj.onc.1203269. [DOI] [PubMed] [Google Scholar]
- Dertinger S. D., Torous D. K., Hall N. E., Tometsko C. R., Gasiewicz T. A. Malaria-infected erythrocytes serve as biological standards to ensure reliable and consistent scoring of micronucleated erythrocytes by flow cytometry. Mutat Res. 2000 Jan 24;464(2):195–200. doi: 10.1016/s1383-5718(99)00183-7. [DOI] [PubMed] [Google Scholar]
- Dertinger S. D., Torous D. K., Tometsko K. R. Simple and reliable enumeration of micronucleated reticulocytes with a single-laser flow cytometer. Mutat Res. 1996 Dec 20;371(3-4):283–292. doi: 10.1016/s0165-1218(96)90117-2. [DOI] [PubMed] [Google Scholar]
- Digweed M., Reis A., Sperling K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. Bioessays. 1999 Aug;21(8):649–656. doi: 10.1002/(SICI)1521-1878(199908)21:8<649::AID-BIES4>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Goodman M. F., Tippin B. The expanding polymerase universe. Nat Rev Mol Cell Biol. 2000 Nov;1(2):101–109. doi: 10.1038/35040051. [DOI] [PubMed] [Google Scholar]
- Harris P. V., Mazina O. M., Leonhardt E. A., Case R. B., Boyd J. B., Burtis K. C. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol. 1996 Oct;16(10):5764–5771. doi: 10.1128/mcb.16.10.5764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi M., Morita T., Kodama Y., Sofuni T., Ishidate M., Jr The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat Res. 1990 Dec;245(4):245–249. doi: 10.1016/0165-7992(90)90153-b. [DOI] [PubMed] [Google Scholar]
- Heddle J. A. A rapid in vivo test for chromosomal damage. Mutat Res. 1973 May;18(2):187–190. doi: 10.1016/0027-5107(73)90035-3. [DOI] [PubMed] [Google Scholar]
- Hendrickson E. A. Cell-cycle regulation of mammalian DNA double-strand-break repair. Am J Hum Genet. 1997 Oct;61(4):795–800. doi: 10.1086/514895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hitotsumachi S., Carpenter D. A., Russell W. L. Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6619–6621. doi: 10.1073/pnas.82.19.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hrabé de Angelis M. H., Flaswinkel H., Fuchs H., Rathkolb B., Soewarto D., Marschall S., Heffner S., Pargent W., Wuensch K., Jung M. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nat Genet. 2000 Aug;25(4):444–447. doi: 10.1038/78146. [DOI] [PubMed] [Google Scholar]
- Jones N. J., Cox R., Thacker J. Isolation and cross-sensitivity of X-ray-sensitive mutants of V79-4 hamster cells. Mutat Res. 1987 May;183(3):279–286. doi: 10.1016/0167-8817(87)90011-3. [DOI] [PubMed] [Google Scholar]
- Jones N. J., Cox R., Thacker J. Six complementation groups for ionising-radiation sensitivity in Chinese hamster cells. Mutat Res. 1988 Mar;193(2):139–144. doi: 10.1016/0167-8817(88)90044-2. [DOI] [PubMed] [Google Scholar]
- Justice M. J., Noveroske J. K., Weber J. S., Zheng B., Bradley A. Mouse ENU mutagenesis. Hum Mol Genet. 1999;8(10):1955–1963. doi: 10.1093/hmg/8.10.1955. [DOI] [PubMed] [Google Scholar]
- Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev. 2000 Apr;10(2):144–150. doi: 10.1016/s0959-437x(00)00069-1. [DOI] [PubMed] [Google Scholar]
- Khanna K. K., Jackson S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001 Mar;27(3):247–254. doi: 10.1038/85798. [DOI] [PubMed] [Google Scholar]
- Kraakman-van der Zwet Maria, Overkamp Wilhelmina J. I., van Lange Rebecca E. E., Essers Jeroen, van Duijn-Goedhart Annemarie, Wiggers Ingrid, Swaminathan Srividya, van Buul Paul P. W., Errami Abdellatif, Tan Raoul T. L. Brca2 (XRCC11) deficiency results in radioresistant DNA synthesis and a higher frequency of spontaneous deletions. Mol Cell Biol. 2002 Jan;22(2):669–679. doi: 10.1128/MCB.22.2.669-679.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lengauer C., Kinzler K. W., Vogelstein B. Genetic instabilities in human cancers. Nature. 1998 Dec 17;396(6712):643–649. doi: 10.1038/25292. [DOI] [PubMed] [Google Scholar]
- Maga Giovanni, Shevelev Igor, Ramadan Kristijan, Spadari Silvio, Hübscher Ulrich. DNA polymerase theta purified from human cells is a high-fidelity enzyme. J Mol Biol. 2002 May 31;319(2):359–369. doi: 10.1016/S0022-2836(02)00325-X. [DOI] [PubMed] [Google Scholar]
- Marini Federica, Wood Richard D. A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem. 2001 Dec 18;277(10):8716–8723. doi: 10.1074/jbc.M110271200. [DOI] [PubMed] [Google Scholar]
- Marker P. C., Seung K., Bland A. E., Russell L. B., Kingsley D. M. Spectrum of Bmp5 mutations from germline mutagenesis experiments in mice. Genetics. 1997 Feb;145(2):435–443. doi: 10.1093/genetics/145.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marx Jean. Debate surges over the origins of genomic defects in cancer. Science. 2002 Jul 26;297(5581):544–546. doi: 10.1126/science.297.5581.544. [DOI] [PubMed] [Google Scholar]
- Morita T., Asano N., Awogi T., Sasaki Y. F., Sato S., Shimada H., Sutou S., Suzuki T., Wakata A., Sofuni T. Evaluation of the rodent micronucleus assay in the screening of IARC carcinogens (groups 1, 2A and 2B) the summary report of the 6th collaborative study by CSGMT/JEMS MMS. Collaborative Study of the Micronucleus Group Test. Mammalian Mutagenicity Study Group. Mutat Res. 1997 Feb 28;389(1):3–122. doi: 10.1016/s1383-5718(96)00070-8. [DOI] [PubMed] [Google Scholar]
- Muller C., Calsou P., Frit P., Salles B. Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie. 1999 Jan-Feb;81(1-2):117–125. doi: 10.1016/s0300-9084(99)80044-3. [DOI] [PubMed] [Google Scholar]
- Nüsse M., Miller B. M., Viaggi S., Grawé J. Analysis of the DNA content distribution of micronuclei using flow sorting and fluorescent in situ hybridization with a centromeric DNA probe. Mutagenesis. 1996 Jul;11(4):405–413. doi: 10.1093/mutage/11.4.405. [DOI] [PubMed] [Google Scholar]
- Peace B. E., Livingston G., Silberstein E. B., Loper J. C. A case of elevated spontaneous micronucleus frequency derived from chromosome 2. Mutat Res. 1999 Nov 29;430(1):109–119. doi: 10.1016/s0027-5107(99)00171-2. [DOI] [PubMed] [Google Scholar]
- Salamone M. F., Mavournin K. H. Bone marrow micronucleus assay: a review of the mouse stocks used and their published mean spontaneous micronucleus frequencies. Environ Mol Mutagen. 1994;23(4):239–273. doi: 10.1002/em.2850230402. [DOI] [PubMed] [Google Scholar]
- Schimenti J., Bucan M. Functional genomics in the mouse: phenotype-based mutagenesis screens. Genome Res. 1998 Jul;8(7):698–710. doi: 10.1101/gr.8.7.698. [DOI] [PubMed] [Google Scholar]
- Scott D., Barber J. B., Spreadborough A. R., Burrill W., Roberts S. A. Increased chromosomal radiosensitivity in breast cancer patients: a comparison of two assays. Int J Radiat Biol. 1999 Jan;75(1):1–10. doi: 10.1080/095530099140744. [DOI] [PubMed] [Google Scholar]
- Serke S., Huhn D. Identification of CD71 (transferrin receptor) expressing erythrocytes by multiparameter-flow-cytometry (MP-FCM): correlation to the quantitation of reticulocytes as determined by conventional microscopy and by MP-FCM using a RNA-staining dye. Br J Haematol. 1992 Jul;81(3):432–439. doi: 10.1111/j.1365-2141.1992.tb08252.x. [DOI] [PubMed] [Google Scholar]
- Sharief F. S., Vojta P. J., Ropp P. A., Copeland W. C. Cloning and chromosomal mapping of the human DNA polymerase theta (POLQ), the eighth human DNA polymerase. Genomics. 1999 Jul 1;59(1):90–96. doi: 10.1006/geno.1999.5843. [DOI] [PubMed] [Google Scholar]
- Thacker J. The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie. 1999 Jan-Feb;81(1-2):77–85. doi: 10.1016/s0300-9084(99)80041-8. [DOI] [PubMed] [Google Scholar]
- Thompson L. H., Brookman K. W., Dillehay L. E., Carrano A. V., Mazrimas J. A., Mooney C. L., Minkler J. L. A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat Res. 1982 Aug;95(2-3):427–440. doi: 10.1016/0027-5107(82)90276-7. [DOI] [PubMed] [Google Scholar]
- Thompson L. H., Schild D. The contribution of homologous recombination in preserving genome integrity in mammalian cells. Biochimie. 1999 Jan-Feb;81(1-2):87–105. doi: 10.1016/s0300-9084(99)80042-x. [DOI] [PubMed] [Google Scholar]
- Torous D. K., Hall N. E., Dertinger S. D., Diehl M. S., Illi-Love A. H., Cederbrant K., Sandelin K., Bolcsfoldi G., Ferguson L. R., Pearson A. Flow cytometric enumeration of micronucleated reticulocytes: high transferability among 14 laboratories. Environ Mol Mutagen. 2001;38(1):59–68. doi: 10.1002/em.1051. [DOI] [PubMed] [Google Scholar]
- Tosal L., Comendador M. A., Sierra L. M. The mus308 locus of Drosophila melanogaster is implicated in the bypass of ENU-induced O-alkylpyrimidine adducts. Mol Gen Genet. 2000 Feb;263(1):144–151. doi: 10.1007/s004380050041. [DOI] [PubMed] [Google Scholar]
- Truett G. E., Heeger P., Mynatt R. L., Truett A. A., Walker J. A., Warman M. L. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000 Jul;29(1):52–54. doi: 10.2144/00291bm09. [DOI] [PubMed] [Google Scholar]
- Tutt A., Gabriel A., Bertwistle D., Connor F., Paterson H., Peacock J., Ross G., Ashworth A. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol. 1999 Oct 7;9(19):1107–1110. doi: 10.1016/s0960-9822(99)80479-5. [DOI] [PubMed] [Google Scholar]
- Venkitaraman Ashok R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002 Jan 25;108(2):171–182. doi: 10.1016/s0092-8674(02)00615-3. [DOI] [PubMed] [Google Scholar]
- Wang X., Peterson C. A., Zheng H., Nairn R. S., Legerski R. J., Li L. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol Cell Biol. 2001 Feb;21(3):713–720. doi: 10.1128/MCB.21.3.713-720.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wijnhoven S. W., Kool H. J., Mullenders L. H., van Zeeland A. A., Friedberg E. C., van der Horst G. T., van Steeg H., Vrieling H. Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair. Oncogene. 2000 Oct 12;19(43):5034–5037. doi: 10.1038/sj.onc.1203844. [DOI] [PubMed] [Google Scholar]
- Zdzienicka M. Z. Mammalian X-ray-sensitive mutants which are defective in non-homologous (illegitimate) DNA double-strand break repair. Biochimie. 1999 Jan-Feb;81(1-2):107–116. doi: 10.1016/s0300-9084(99)80043-1. [DOI] [PubMed] [Google Scholar]
- van Brabant A. J., Stan R., Ellis N. A. DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet. 2000;1:409–459. doi: 10.1146/annurev.genom.1.1.409. [DOI] [PubMed] [Google Scholar]
- van Kreijl C. F., McAnulty P. A., Beems R. B., Vynckier A., van Steeg H., Fransson-Steen R., Alden C. L., Forster R., van der Laan J. W., Vandenberghe J. Xpa and Xpa/p53+/- knockout mice: overview of available data. Toxicol Pathol. 2001;29 (Suppl):117–127. doi: 10.1080/0192623013014189281. [DOI] [PubMed] [Google Scholar]