Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Nucleic Acids Research logoLink to Nucleic Acids Research
. 1996 Nov 1;24(21):4298–4303. doi: 10.1093/nar/24.21.4298

Drosophila ribosomal protein PO contains apurinic/apyrimidinic endonuclease activity.

A Yacoub 1, M R Kelley 1, W A Deutsch 1
PMCID: PMC146249  PMID: 8932386

Abstract

Drosophila ribosomal protein PO was overexpressed in Escherichia coli to allow for its purification, biochemical characterization and to generate polyclonal antibodies for Western analysis. Biochemical tests were originally performed to see if overexpressed PO contained DNase activity similar to that recently reported for the apurinic/apyrimidinic (AP) lyase activity associated with Drosophila ribosomal protein S3. The overexpressed ribosomal protein was subsequently found to act on AP DNA, producing scissions that were in this case 5' of a baseless site instead of 3', as has been observed for S3. As a means of confirming that the source of AP endonuclease activity was in fact due to PO, glutathione S-transferase (GST) fusions containing a Factor Xa cleavage site between GST and PO were constructed, overexpressed in an E.coli strain defective for the major 5'-acting AP endonucleases and the fusions purified using glutathione-agarose affinity column chromatography. Isolated fractions containing purified GST-PO fusion proteins were subsequently found to have authentic AP endonuclease activity. Moreover, glutathione-agarose was able to deplete AP endonuclease activity from GST-PO fusion protein preparations, whereas the resin was ineffective in lowering DNA repair activity for PO that had been liberated from the fusion construct by Factor Xa cleavage. These results suggested that PO was a multifunctional protein with possible roles in DNA repair beyond its known participation in protein translation. In support of this notion, tests were performed that show that GST-PO, but not GST, was able to rescue an E.coli mutant lacking the major 5'-acting AP endonucleases from sensitivity to an alkylating agent. We furthermore show that GST-PO can be located in both the nucleus and ribosomes. Its nuclear location can be further traced to the nuclear matrix, thus placing PO in a subcellular location where it could act as a DNA repair protein. Other roles beyond DNA repair seem possible, however, since GST-PO also exhibited significant nuclease activity for both single- and double-stranded DNA.

Full Text

The Full Text of this article is available as a PDF (103.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly V., Verly W. G. Escherichia coli endonuclease III is not an endonuclease but a beta-elimination catalyst. Biochem J. 1987 Mar 1;242(2):565–572. doi: 10.1042/bj2420565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chan P. K., Aldrich M., Busch H. Alterations in immunolocalization of the phosphoprotein B23 in HeLa cells during serum starvation. Exp Cell Res. 1985 Nov;161(1):101–110. doi: 10.1016/0014-4827(85)90494-x. [DOI] [PubMed] [Google Scholar]
  3. Cunningham R. P., Saporito S. M., Spitzer S. G., Weiss B. Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol. 1986 Dec;168(3):1120–1127. doi: 10.1128/jb.168.3.1120-1127.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demple B., Herman T., Chen D. S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11450–11454. doi: 10.1073/pnas.88.24.11450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drapkin R., Sancar A., Reinberg D. Where transcription meets repair. Cell. 1994 Apr 8;77(1):9–12. doi: 10.1016/0092-8674(94)90228-3. [DOI] [PubMed] [Google Scholar]
  6. Feaver W. J., Svejstrup J. Q., Bardwell L., Bardwell A. J., Buratowski S., Gulyas K. D., Donahue T. F., Friedberg E. C., Kornberg R. D. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell. 1993 Dec 31;75(7):1379–1387. doi: 10.1016/0092-8674(93)90624-y. [DOI] [PubMed] [Google Scholar]
  7. Fisher P. A., Berrios M., Blobel G. Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster. J Cell Biol. 1982 Mar;92(3):674–686. doi: 10.1083/jcb.92.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grabowski D. T., Pieper R. O., Futscher B. W., Deutsch W. A., Erickson L. C., Kelley M. R. Expression of ribosomal phosphoprotein PO is induced by antitumor agents and increased in Mer- human tumor cell lines. Carcinogenesis. 1992 Feb;13(2):259–263. doi: 10.1093/carcin/13.2.259. [DOI] [PubMed] [Google Scholar]
  9. Guzder S. N., Qiu H., Sommers C. H., Sung P., Prakash L., Prakash S. DNA repair gene RAD3 of S. cerevisiae is essential for transcription by RNA polymerase II. Nature. 1994 Jan 6;367(6458):91–94. doi: 10.1038/367091a0. [DOI] [PubMed] [Google Scholar]
  10. Kane C. M., Linn S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J Biol Chem. 1981 Apr 10;256(7):3405–3414. [PubMed] [Google Scholar]
  11. Kelley M. R., Venugopal S., Harless J., Deutsch W. A. Antibody to a human DNA repair protein allows for cloning of a Drosophila cDNA that encodes an apurinic endonuclease. Mol Cell Biol. 1989 Mar;9(3):965–973. doi: 10.1128/mcb.9.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levin J. D., Demple B. Analysis of class II (hydrolytic) and class I (beta-lyase) apurinic/apyrimidinic endonucleases with a synthetic DNA substrate. Nucleic Acids Res. 1990 Sep 11;18(17):5069–5075. doi: 10.1093/nar/18.17.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindahl T. Uracil-DNA glycosylase from Escherichia coli. Methods Enzymol. 1980;65(1):284–290. doi: 10.1016/s0076-6879(80)65038-1. [DOI] [PubMed] [Google Scholar]
  14. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  15. Oberto J., Bonnefoy E., Mouray E., Pellegrini O., Wikström P. M., Rouvière-Yaniv J. The Escherichia coli ribosomal protein S16 is an endonuclease. Mol Microbiol. 1996 Mar;19(6):1319–1330. doi: 10.1111/j.1365-2958.1996.tb02476.x. [DOI] [PubMed] [Google Scholar]
  16. Pogue-Geile K., Geiser J. R., Shu M., Miller C., Wool I. G., Meisler A. I., Pipas J. M. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol Cell Biol. 1991 Aug;11(8):3842–3849. doi: 10.1128/mcb.11.8.3842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rich B. E., Steitz J. A. Human acidic ribosomal phosphoproteins P0, P1, and P2: analysis of cDNA clones, in vitro synthesis, and assembly. Mol Cell Biol. 1987 Nov;7(11):4065–4074. doi: 10.1128/mcb.7.11.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rogers S. G., Weiss B. Exonuclease III of Escherichia coli K-12, an AP endonuclease. Methods Enzymol. 1980;65(1):201–211. doi: 10.1016/s0076-6879(80)65028-9. [DOI] [PubMed] [Google Scholar]
  19. Sauerbier W., Hercules K. Gene and transcription unit mapping by radiation effects. Annu Rev Genet. 1978;12:329–363. doi: 10.1146/annurev.ge.12.120178.001553. [DOI] [PubMed] [Google Scholar]
  20. Sayre M. H., Tschochner H., Kornberg R. D. Reconstitution of transcription with five purified initiation factors and RNA polymerase II from Saccharomyces cerevisiae. J Biol Chem. 1992 Nov 15;267(32):23376–23382. [PubMed] [Google Scholar]
  21. Sánchez-Madrid F., Vidales F. J., Ballesta J. P. Effect of phosphorylation on the affinity of acidic proteins from Saccharomyces cerevisiae for the ribosomes. Eur J Biochem. 1981 Mar;114(3):609–613. doi: 10.1111/j.1432-1033.1981.tb05187.x. [DOI] [PubMed] [Google Scholar]
  22. Takeuchi M., Lillis R., Demple B., Takeshita M. Interactions of Escherichia coli endonuclease IV and exonuclease III with abasic sites in DNA. J Biol Chem. 1994 Aug 26;269(34):21907–21914. [PubMed] [Google Scholar]
  23. Uchiumi T., Kikuchi M., Ogata K. Cross-linking study on protein neighborhoods at the subunit interface of rat liver ribosomes with 2-iminothiolane. J Biol Chem. 1986 Jul 25;261(21):9663–9667. [PubMed] [Google Scholar]
  24. Uchiumi T., Kikuchi M., Terao K., Iwasaki K., Ogata K. Cross-linking of elongation factor 2 to rat-liver ribosomal proteins by 2-iminothiolane. Eur J Biochem. 1986 Apr 1;156(1):37–48. doi: 10.1111/j.1432-1033.1986.tb09545.x. [DOI] [PubMed] [Google Scholar]
  25. Uchiumi T., Kikuchi M., Terao K., Ogata K. Cross-linking study on protein topography of rat liver 60 S ribosomal subunits with 2-iminothiolane. J Biol Chem. 1985 May 10;260(9):5675–5682. [PubMed] [Google Scholar]
  26. Wang Z., Svejstrup J. Q., Feaver W. J., Wu X., Kornberg R. D., Friedberg E. C. Transcription factor b (TFIIH) is required during nucleotide-excision repair in yeast. Nature. 1994 Mar 3;368(6466):74–76. doi: 10.1038/368074a0. [DOI] [PubMed] [Google Scholar]
  27. Watson K. L., Konrad K. D., Woods D. F., Bryant P. J. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11302–11306. doi: 10.1073/pnas.89.23.11302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson D. M., 3rd, Deutsch W. A., Kelley M. R. Drosophila ribosomal protein S3 contains an activity that cleaves DNA at apurinic/apyrimidinic sites. J Biol Chem. 1994 Oct 14;269(41):25359–25364. [PubMed] [Google Scholar]
  29. Yacoub A., Augeri L., Kelley M. R., Doetsch P. W., Deutsch W. A. A Drosophila ribosomal protein contains 8-oxoguanine and abasic site DNA repair activities. EMBO J. 1996 May 1;15(9):2306–2312. [PMC free article] [PubMed] [Google Scholar]
  30. de Cock J. G., Klink E. C., Ferro W., Lohman P. H., Eeken J. C. Neither enhanced removal of cyclobutane pyrimidine dimers nor strand-specific repair is found after transcription induction of the beta 3-tubulin gene in a Drosophila embryonic cell line Kc. Mutat Res. 1992 Nov;293(1):11–20. doi: 10.1016/0921-8777(92)90003-l. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES