Abstract
The centromeres of Arabidopsis thaliana chromosomes contain megabases of complex DNA consisting of numerous types of repetitive DNA elements. We developed a chromatin immunoprecipitation (ChIP) technique using an antibody against the centromeric H3 histone, HTR12, in Arabidopsis. ChIP assays showed that the 180-bp centromeric satellite repeat was precipitated with the antibody, suggesting that this repeat is the key component of the centromere/kinetochore complex in Arabidopsis.
Full Text
The Full Text of this article is available as a PDF (118.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad K., Henikoff S. Centromeres are specialized replication domains in heterochromatin. J Cell Biol. 2001 Apr 2;153(1):101–110. doi: 10.1083/jcb.153.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alfenito M. R., Birchler J. A. Molecular characterization of a maize B chromosome centric sequence. Genetics. 1993 Oct;135(2):589–597. doi: 10.1093/genetics/135.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ananiev E. V., Phillips R. L., Rines H. W. Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13073–13078. doi: 10.1073/pnas.95.22.13073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000 Dec 14;408(6814):796–815. doi: 10.1038/35048692. [DOI] [PubMed] [Google Scholar]
- Blower Michael D., Sullivan Beth A., Karpen Gary H. Conserved organization of centromeric chromatin in flies and humans. Dev Cell. 2002 Mar;2(3):319–330. doi: 10.1016/s1534-5807(02)00135-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandes A., Thompson H., Dean C., Heslop-Harrison J. S. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res. 1997 Jun;5(4):238–246. doi: 10.1023/a:1018415502795. [DOI] [PubMed] [Google Scholar]
- Cheng Zhukuan, Dong Fenggao, Langdon Tim, Ouyang Shu, Buell C. Robin, Gu Minghong, Blattner Frederick R., Jiang Jiming. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002 Aug;14(8):1691–1704. doi: 10.1105/tpc.003079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Copenhaver G. P., Nickel K., Kuromori T., Benito M. I., Kaul S., Lin X., Bevan M., Murphy G., Harris B., Parnell L. D. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 1999 Dec 24;286(5449):2468–2474. doi: 10.1126/science.286.5449.2468. [DOI] [PubMed] [Google Scholar]
- Csink A. K., Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 1998 May;14(5):200–204. doi: 10.1016/s0168-9525(98)01444-9. [DOI] [PubMed] [Google Scholar]
- Dobie K. W., Hari K. L., Maggert K. A., Karpen G. H. Centromere proteins and chromosome inheritance: a complex affair. Curr Opin Genet Dev. 1999 Apr;9(2):206–217. doi: 10.1016/S0959-437X(99)80031-8. [DOI] [PubMed] [Google Scholar]
- Dong F., Miller J. T., Jackson S. A., Wang G. L., Ronald P. C., Jiang J. Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8135–8140. doi: 10.1073/pnas.95.14.8135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fransz P. F., Armstrong S., de Jong J. H., Parnell L. D., van Drunen C., Dean C., Zabel P., Bisseling T., Jones G. H. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000 Feb 4;100(3):367–376. doi: 10.1016/s0092-8674(00)80672-8. [DOI] [PubMed] [Google Scholar]
- Fransz P., Armstrong S., Alonso-Blanco C., Fischer T. C., Torres-Ruiz R. A., Jones G. Cytogenetics for the model system Arabidopsis thaliana. Plant J. 1998 Mar;13(6):867–876. doi: 10.1046/j.1365-313x.1998.00086.x. [DOI] [PubMed] [Google Scholar]
- Gerlach W. L., Dyer T. A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980 Nov 11;8(21):4851–4865. doi: 10.1093/nar/8.21.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S., Ahmad K., Malik H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001 Aug 10;293(5532):1098–1102. doi: 10.1126/science.1062939. [DOI] [PubMed] [Google Scholar]
- Henikoff Steven. Near the edge of a chromosome's "black hole". Trends Genet. 2002 Apr;18(4):165–167. doi: 10.1016/s0168-9525(01)02622-1. [DOI] [PubMed] [Google Scholar]
- Heslop-Harrison J. S., Murata M., Ogura Y., Schwarzacher T., Motoyoshi F. Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell. 1999 Jan;11(1):31–42. doi: 10.1105/tpc.11.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaszás E., Birchler J. A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaszás E., Birchler J. A. Misdivision analysis of centromere structure in maize. EMBO J. 1996 Oct 1;15(19):5246–5255. [PMC free article] [PubMed] [Google Scholar]
- Kumekawa N., Hosouchi T., Tsuruoka H., Kotani H. The size and sequence organization of the centromeric region of Arabidopsis thaliana chromosome 4. DNA Res. 2001 Dec 31;8(6):285–290. doi: 10.1093/dnares/8.6.285. [DOI] [PubMed] [Google Scholar]
- Kumekawa N., Hosouchi T., Tsuruoka H., Kotani H. The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5. DNA Res. 2000 Dec 31;7(6):315–321. doi: 10.1093/dnares/7.6.315. [DOI] [PubMed] [Google Scholar]
- Langdon T., Seago C., Mende M., Leggett M., Thomas H., Forster J. W., Jones R. N., Jenkins G. Retrotransposon evolution in diverse plant genomes. Genetics. 2000 Sep;156(1):313–325. doi: 10.1093/genetics/156.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lo A. W., Magliano D. J., Sibson M. C., Kalitsis P., Craig J. M., Choo K. H. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 2001 Mar;11(3):448–457. doi: 10.1101/gr.167601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. T., Dong F., Jackson S. A., Song J., Jiang J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics. 1998 Dec;150(4):1615–1623. doi: 10.1093/genetics/150.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murata M., Ogura Y., Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet. 1994 Aug;69(4):361–370. doi: 10.1266/jjg.69.361. [DOI] [PubMed] [Google Scholar]
- Nagaki Kiyotaka, Song Junqi, Stupar Robert M., Parokonny Alexander S., Yuan Qiaoping, Ouyang Shu, Liu Jia, Hsiao Joseph, Jones Kristine M., Dawe R. Kelly. Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics. 2003 Feb;163(2):759–770. doi: 10.1093/genetics/163.2.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer D. K., O'Day K., Trong H. L., Charbonneau H., Margolis R. L. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3734–3738. doi: 10.1073/pnas.88.9.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer D. K., O'Day K., Wener M. H., Andrews B. S., Margolis R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol. 1987 Apr;104(4):805–815. doi: 10.1083/jcb.104.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Presting G. G., Malysheva L., Fuchs J., Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998 Dec;16(6):721–728. doi: 10.1046/j.1365-313x.1998.00341.x. [DOI] [PubMed] [Google Scholar]
- Richards E. J., Goodman H. M., Ausubel F. M. The centromere region of Arabidopsis thaliana chromosome 1 contains telomere-similar sequences. Nucleic Acids Res. 1991 Jun 25;19(12):3351–3357. doi: 10.1093/nar/19.12.3351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Round E. K., Flowers S. K., Richards E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 1997 Nov;7(11):1045–1053. doi: 10.1101/gr.7.11.1045. [DOI] [PubMed] [Google Scholar]
- Schueler M. G., Higgins A. W., Rudd M. K., Gustashaw K., Willard H. F. Genomic and genetic definition of a functional human centromere. Science. 2001 Oct 5;294(5540):109–115. doi: 10.1126/science.1065042. [DOI] [PubMed] [Google Scholar]
- Stupar R. M., Lilly J. W., Town C. D., Cheng Z., Kaul S., Buell C. R., Jiang J. Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5099–5103. doi: 10.1073/pnas.091110398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sullivan B. A., Blower M. D., Karpen G. H. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet. 2001 Aug;2(8):584–596. doi: 10.1038/35084512. [DOI] [PubMed] [Google Scholar]
- Talbert Paul B., Masuelli Ricardo, Tyagi Anand P., Comai Luca, Henikoff Steven. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell. 2002 May;14(5):1053–1066. doi: 10.1105/tpc.010425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson H. L., Schmidt R., Dean C. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res. 1996 Aug 1;24(15):3017–3022. doi: 10.1093/nar/24.15.3017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warburton P. E., Cooke C. A., Bourassa S., Vafa O., Sullivan B. A., Stetten G., Gimelli G., Warburton D., Tyler-Smith C., Sullivan K. F. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 1997 Nov 1;7(11):901–904. doi: 10.1016/s0960-9822(06)00382-4. [DOI] [PubMed] [Google Scholar]
- Yoda K., Ando S., Morishita S., Houmura K., Hashimoto K., Takeyasu K., Okazaki T. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7266–7271. doi: 10.1073/pnas.130189697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu H. G., Hiatt E. N., Dawe R. K. The plant kinetochore. Trends Plant Sci. 2000 Dec;5(12):543–547. doi: 10.1016/s1360-1385(00)01789-1. [DOI] [PubMed] [Google Scholar]
- Zhong Cathy Xiaoyan, Marshall Joshua B., Topp Christopher, Mroczek Rebecca, Kato Akio, Nagaki Kiyotaka, Birchler James A., Jiang Jiming, Dawe R. Kelly. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002 Nov;14(11):2825–2836. doi: 10.1105/tpc.006106. [DOI] [PMC free article] [PubMed] [Google Scholar]