Abstract
Microsatellites are widely used as genetic markers because they are co-dominant, multiallelic, easily scored and highly polymorphic. A major drawback of microsatellite markers is the time and cost required to characterise them. We have developed a novel technique to reduce this cost by producing a microsatellite-rich PCR profile from genomic DNA which was cloned to yield a genomic library enriched for microsatellites. Sequence data and subsequent allele scoring within pedigrees revealed that these microsatellites retained their original repeat length and segregated normally. This technique permits genomic amplification with only one specific primer. Together with enrichment, the savings in primer costs reduces the cost of microsatellite characterisation considerably.
Full Text
The Full Text of this article is available as a PDF (47.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amos B., Schlötterer C., Tautz D. Social structure of pilot whales revealed by analytical DNA profiling. Science. 1993 Apr 30;260(5108):670–672. doi: 10.1126/science.8480176. [DOI] [PubMed] [Google Scholar]
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Bierwerth S., Kahl G., Weigand F., Weising K. Oligonucleotide fingerprinting of plant and fungal genomes: a comparison of radioactive, colorigenic and chemiluminescent detection methods. Electrophoresis. 1992 Mar;13(3):115–122. doi: 10.1002/elps.1150130125. [DOI] [PubMed] [Google Scholar]
- Bowcock A. M., Ruiz-Linares A., Tomfohrde J., Minch E., Kidd J. R., Cavalli-Sforza L. L. High resolution of human evolutionary trees with polymorphic microsatellites. Nature. 1994 Mar 31;368(6470):455–457. doi: 10.1038/368455a0. [DOI] [PubMed] [Google Scholar]
- Hazan J., Dubay C., Pankowiak M. P., Becuwe N., Weissenbach J. A genetic linkage map of human chromosome 20 composed entirely of microsatellite markers. Genomics. 1992 Feb;12(2):183–189. doi: 10.1016/0888-7543(92)90364-x. [DOI] [PubMed] [Google Scholar]
- Litt M., Luty J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989 Mar;44(3):397–401. [PMC free article] [PubMed] [Google Scholar]
- Richardson T., Cato S., Ramser J., Kahl G., Weising K. Hybridization of microsatellites to RAPD: a new source of polymorphic markers. Nucleic Acids Res. 1995 Sep 25;23(18):3798–3799. doi: 10.1093/nar/23.18.3798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weising K., Atkinson R. G., Gardner R. C. Genomic fingerprinting by microsatellite-primed PCR: a critical evaluation. PCR Methods Appl. 1995 Apr;4(5):249–255. doi: 10.1101/gr.4.5.249. [DOI] [PubMed] [Google Scholar]
- Wu K. S., Jones R., Danneberger L., Scolnik P. A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res. 1994 Aug 11;22(15):3257–3258. doi: 10.1093/nar/22.15.3257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994 Mar 15;20(2):176–183. doi: 10.1006/geno.1994.1151. [DOI] [PubMed] [Google Scholar]