Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1287–1298. doi: 10.1093/genetics/163.4.1287

Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae.

James B Anderson 1, Caroline Sirjusingh 1, Ainslie B Parsons 1, Charles Boone 1, Claire Wickens 1, Leah E Cowen 1, Linda M Kohn 1
PMCID: PMC1462505  PMID: 12702675

Abstract

We show that mode of selection, degree of dominance of mutations, and ploidy are determining factors in the evolution of resistance to the antifungal drug fluconazole in yeast. In experiment 1, yeast populations were subjected to a stepwise increase in fluconazole concentration over 400 generations. Under this regimen, two mutations in the same two chromosomal regions rose to high frequency in parallel in three replicate populations. These mutations were semidominant and additive in their effect on resistance. The first of these mutations mapped to PDR1 and resulted in the overexpression of the ABC transporter genes PDR5 and SNQ2. These mutations had an unexpected pleiotropic effect of reducing the residual ability of the wild type to reproduce at the highest concentrations of fluconazole. In experiment 2, yeast populations were subjected to a single high concentration of fluconazole. Under this regimen, a single recessive mutation appeared in each of three replicate populations. In a genome-wide screen of approximately 4700 viable deletion strains, 13 were classified as resistant to fluconazole (ERG3, ERG6, YMR102C, YMR099C, YPL056C, ERG28, OSH1, SCS2, CKA2, SML1, YBR147W, YGR283C, and YLR407W). The mutations in experiment 2 all mapped to ERG3 and resulted in the overexpression of the gene encoding the drug target ERG11, but not PDR5 and SNQ2. Diploid hybrids from experiments 1 and 2 were less fit than the parents in the presence of fluconazole. In a variation of experiment 2, haploids showed a higher frequency of resistance than diploids, suggesting that degree of dominance and ploidy are important factors in the evolution of antifungal drug resistance.

Full Text

The Full Text of this article is available as a PDF (221.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson D. I., Levin B. R. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999 Oct;2(5):489–493. doi: 10.1016/s1369-5274(99)00005-3. [DOI] [PubMed] [Google Scholar]
  2. Beh C. T., Cool L., Phillips J., Rine J. Overlapping functions of the yeast oxysterol-binding protein homologues. Genetics. 2001 Mar;157(3):1117–1140. doi: 10.1093/genetics/157.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cowen L. E., Kohn L. M., Anderson J. B. Divergence in fitness and evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol. 2001 May;183(10):2971–2978. doi: 10.1128/JB.183.10.2971-2978.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cowen L. E., Sanglard D., Calabrese D., Sirjusingh C., Anderson J. B., Kohn L. M. Evolution of drug resistance in experimental populations of Candida albicans. J Bacteriol. 2000 Mar;182(6):1515–1522. doi: 10.1128/jb.182.6.1515-1522.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cowen Leah E., Anderson James B., Kohn Linda M. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol. 2002 Jan 30;56:139–165. doi: 10.1146/annurev.micro.56.012302.160907. [DOI] [PubMed] [Google Scholar]
  6. Cowen Leah E., Nantel André, Whiteway Malcolm S., Thomas David Y., Tessier Daniel C., Kohn Linda M., Anderson James B. Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A. 2002 Jun 27;99(14):9284–9289. doi: 10.1073/pnas.102291099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeRisi J., van den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants. FEBS Lett. 2000 Mar 24;470(2):156–160. doi: 10.1016/s0014-5793(00)01294-1. [DOI] [PubMed] [Google Scholar]
  8. Gachotte D., Eckstein J., Barbuch R., Hughes T., Roberts C., Bard M. A novel gene conserved from yeast to humans is involved in sterol biosynthesis. J Lipid Res. 2001 Jan;42(1):150–154. [PubMed] [Google Scholar]
  9. Georgopapadakou N. H., Walsh T. J. Human mycoses: drugs and targets for emerging pathogens. Science. 1994 Apr 15;264(5157):371–373. doi: 10.1126/science.8153622. [DOI] [PubMed] [Google Scholar]
  10. Hughes T. R., Marton M. J., Jones A. R., Roberts C. J., Stoughton R., Armour C. D., Bennett H. A., Coffey E., Dai H., He Y. D. Functional discovery via a compendium of expression profiles. Cell. 2000 Jul 7;102(1):109–126. doi: 10.1016/s0092-8674(00)00015-5. [DOI] [PubMed] [Google Scholar]
  11. Kagiwada S., Hosaka K., Murata M., Nikawa J., Takatsuki A. The Saccharomyces cerevisiae SCS2 gene product, a homolog of a synaptobrevin-associated protein, is an integral membrane protein of the endoplasmic reticulum and is required for inositol metabolism. J Bacteriol. 1998 Apr;180(7):1700–1708. doi: 10.1128/jb.180.7.1700-1708.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kolaczkowska A., Kolaczkowski M., Delahodde A., Goffeau A. Functional dissection of Pdr1p, a regulator of multidrug resistance in Saccharomyces cerevisiae. Mol Genet Genomics. 2002 Feb 20;267(1):96–106. doi: 10.1007/s00438-002-0642-0. [DOI] [PubMed] [Google Scholar]
  13. Kolaczkowska Anna, Goffeau Andre. Regulation of pleiotropic drug resistance in yeast. Drug Resist Updat. 1999 Dec;2(6):403–414. doi: 10.1054/drup.1999.0113. [DOI] [PubMed] [Google Scholar]
  14. Levin B. R., Perrot V., Walker N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics. 2000 Mar;154(3):985–997. doi: 10.1093/genetics/154.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lupetti Antonella, Danesi Romano, Campa Mario, Del Tacca Mario, Kelly Steven. Molecular basis of resistance to azole antifungals. Trends Mol Med. 2002 Feb;8(2):76–81. doi: 10.1016/s1471-4914(02)02280-3. [DOI] [PubMed] [Google Scholar]
  16. Marchetti O., Entenza J. M., Sanglard D., Bille J., Glauser M. P., Moreillon P. Fluconazole plus cyclosporine: a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother. 2000 Nov;44(11):2932–2938. doi: 10.1128/aac.44.11.2932-2938.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marr K. A., Rustad T. R., Rex J. H., White T. C. The trailing end point phenotype in antifungal susceptibility testing is pH dependent. Antimicrob Agents Chemother. 1999 Jun;43(6):1383–1386. doi: 10.1128/aac.43.6.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Orr H. A., Otto S. P. Does diploidy increase the rate of adaptation? Genetics. 1994 Apr;136(4):1475–1480. doi: 10.1093/genetics/136.4.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rex J. H., Pfaller M. A., Walsh T. J., Chaturvedi V., Espinel-Ingroff A., Ghannoum M. A., Gosey L. L., Odds F. C., Rinaldi M. G., Sheehan D. J. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev. 2001 Oct;14(4):643-58, table of contents. doi: 10.1128/CMR.14.4.643-658.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reyes Guadalupe, Ghannoum Mahmoud A. Antifungal susceptibility testing of yeasts: uses and limitations. Drug Resist Updat. 2000 Feb;3(1):14–19. doi: 10.1054/drup.2000.0127. [DOI] [PubMed] [Google Scholar]
  21. Reynolds T. B., Fink G. R. Bakers' yeast, a model for fungal biofilm formation. Science. 2001 Feb 2;291(5505):878–881. doi: 10.1126/science.291.5505.878. [DOI] [PubMed] [Google Scholar]
  22. Sanglard D., Ischer F., Calabrese D., Micheli M., Bille J. Multiple resistance mechanisms to azole antifungals in yeast clinical isolates. Drug Resist Updat. 1998;1(4):255–265. doi: 10.1016/s1368-7646(98)80006-x. [DOI] [PubMed] [Google Scholar]
  23. Sato M., Fujisaki S., Sato K., Nishimura Y., Nakano A. Yeast Saccharomyces cerevisiae has two cis-prenyltransferases with different properties and localizations. Implication for their distinct physiological roles in dolichol synthesis. Genes Cells. 2001 Jun;6(6):495–506. doi: 10.1046/j.1365-2443.2001.00438.x. [DOI] [PubMed] [Google Scholar]
  24. Sherman F., Hicks J. Micromanipulation and dissection of asci. Methods Enzymol. 1991;194:21–37. doi: 10.1016/0076-6879(91)94005-w. [DOI] [PubMed] [Google Scholar]
  25. Taylor J. W., Geiser D. M., Burt A., Koufopanou V. The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev. 1999 Jan;12(1):126–146. doi: 10.1128/cmr.12.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wach A., Brachat A., Pöhlmann R., Philippsen P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast. 1994 Dec;10(13):1793–1808. doi: 10.1002/yea.320101310. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES