Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1511–1518. doi: 10.1093/genetics/163.4.1511

Selection in a subdivided population with dominance or local frequency dependence.

Joshua L Cherry 1
PMCID: PMC1462507  PMID: 12702693

Abstract

The interplay between population structure and natural selection is an area of great interest. It is known that certain types of population subdivision do not alter fixation probabilities of selected alleles under genic, frequency-independent selection. In the presence of dominance for fitness or frequency-dependent selection these same types of subdivision can have large effects on fixation probabilities. For example, the barrier to fixation of a fitter allele due to underdominance is reduced by subdivision. Analytic results presented here relate a subdivided population that conforms to a finite island model to an approximately equivalent panmictic population. The size of this equivalent population is different from (larger than) the actual size of the subdivided population. Selection parameters are also different in the hypothetical equivalent population. As expected, the degree of dominance is lower in the equivalent population. The results are not limited to dominance but cover any form of polynomial frequency dependence.

Full Text

The Full Text of this article is available as a PDF (106.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cherry Joshua L., Wakeley John. A diffusion approximation for selection and drift in a subdivided population. Genetics. 2003 Jan;163(1):421–428. doi: 10.1093/genetics/163.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dobzhansky T, Wright S. Genetics of Natural Populations. V. Relations between Mutation Rate and Accumulation of Lethals in Populations of Drosophila Pseudoobscura. Genetics. 1941 Jan;26(1):23–51. doi: 10.1093/genetics/26.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lande R. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity (Edinb) 1985 Jun;54(Pt 3):323–332. doi: 10.1038/hdy.1985.43. [DOI] [PubMed] [Google Scholar]
  5. Maruyama T. A simple proof that certain quantities are independent of the geographical structure of population. Theor Popul Biol. 1974 Apr;5(2):148–154. doi: 10.1016/0040-5809(74)90037-9. [DOI] [PubMed] [Google Scholar]
  6. Maruyama T. Distribution of gene frequencies in a geographically structured population. II. Distribution of deleterious genes and of lethal genes. Ann Hum Genet. 1972 Apr;35(4):425–432. doi: 10.1111/j.1469-1809.1957.tb01867.x. [DOI] [PubMed] [Google Scholar]
  7. Maruyama T. Effective number of alleles in a subdivided population. Theor Popul Biol. 1970 Nov;1(3):273–306. doi: 10.1016/0040-5809(70)90047-x. [DOI] [PubMed] [Google Scholar]
  8. Maruyama T., Kimura M. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6710–6714. doi: 10.1073/pnas.77.11.6710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maruyama T. On the fixation probability of mutant genes in a subdivided population. Genet Res. 1970 Apr;15(2):221–225. doi: 10.1017/s0016672300001543. [DOI] [PubMed] [Google Scholar]
  10. Nagylaki T. The expected number of heterozygous sites in a subdivided population. Genetics. 1998 Jul;149(3):1599–1604. doi: 10.1093/genetics/149.3.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nei M., Takahata N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J Mol Evol. 1993 Sep;37(3):240–244. doi: 10.1007/BF00175500. [DOI] [PubMed] [Google Scholar]
  12. Santiago E., Caballero A. Effective size of populations under selection. Genetics. 1995 Feb;139(2):1013–1030. doi: 10.1093/genetics/139.2.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Slatkin M. Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Popul Biol. 1977 Dec;12(3):253–262. doi: 10.1016/0040-5809(77)90045-4. [DOI] [PubMed] [Google Scholar]
  14. Slatkin M. Inbreeding coefficients and coalescence times. Genet Res. 1991 Oct;58(2):167–175. doi: 10.1017/s0016672300029827. [DOI] [PubMed] [Google Scholar]
  15. Spirito F., Rizzoni M., Rossi C. The establishment of underdominant chromosomal rearrangements in multi-deme systems with local extinction and colonization. Theor Popul Biol. 1993 Aug;44(1):80–94. doi: 10.1006/tpbi.1993.1019. [DOI] [PubMed] [Google Scholar]
  16. Takahata N. Genealogy of neutral genes and spreading of selected mutations in a geographically structured population. Genetics. 1991 Oct;129(2):585–595. doi: 10.1093/genetics/129.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Whitlock M. C., Barton N. H. The effective size of a subdivided population. Genetics. 1997 May;146(1):427–441. doi: 10.1093/genetics/146.1.427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES