Skip to main content
Genetics logoLink to Genetics
. 2003 Apr;163(4):1365–1373. doi: 10.1093/genetics/163.4.1365

An in vivo analysis of the vestigial gene in Drosophila melanogaster defines the domains required for Vg function.

Julie O MacKay 1, Kelly H Soanes 1, Ajay Srivastava 1, Andrew Simmonds 1, William J Brook 1, John B Bell 1
PMCID: PMC1462521  PMID: 12702681

Abstract

Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.

Full Text

The Full Text of this article is available as a PDF (551.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bairoch A., Bucher P., Hofmann K. The PROSITE database, its status in 1997. Nucleic Acids Res. 1997 Jan 1;25(1):217–221. doi: 10.1093/nar/25.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bellen H. J., O'Kane C. J., Wilson C., Grossniklaus U., Pearson R. K., Gehring W. J. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989 Sep;3(9):1288–1300. doi: 10.1101/gad.3.9.1288. [DOI] [PubMed] [Google Scholar]
  3. Campbell S. D., Duttaroy A., Katzen A. L., Chovnick A. Cloning and characterization of the scalloped region of Drosophila melanogaster. Genetics. 1991 Feb;127(2):367–380. doi: 10.1093/genetics/127.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell S., Inamdar M., Rodrigues V., Raghavan V., Palazzolo M., Chovnick A. The scalloped gene encodes a novel, evolutionarily conserved transcription factor required for sensory organ differentiation in Drosophila. Genes Dev. 1992 Mar;6(3):367–379. doi: 10.1101/gad.6.3.367. [DOI] [PubMed] [Google Scholar]
  5. Guss K. A., Nelson C. E., Hudson A., Kraus M. E., Carroll S. B. Control of a genetic regulatory network by a selector gene. Science. 2001 Apr 12;292(5519):1164–1167. doi: 10.1126/science.1058312. [DOI] [PubMed] [Google Scholar]
  6. Halder G., Carroll S. B. Binding of the Vestigial co-factor switches the DNA-target selectivity of the Scalloped selector protein. Development. 2001 Sep;128(17):3295–3305. doi: 10.1242/dev.128.17.3295. [DOI] [PubMed] [Google Scholar]
  7. Halder G., Polaczyk P., Kraus M. E., Hudson A., Kim J., Laughon A., Carroll S. The Vestigial and Scalloped proteins act together to directly regulate wing-specific gene expression in Drosophila. Genes Dev. 1998 Dec 15;12(24):3900–3909. doi: 10.1101/gad.12.24.3900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kim J., Sebring A., Esch J. J., Kraus M. E., Vorwerk K., Magee J., Carroll S. B. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature. 1996 Jul 11;382(6587):133–138. doi: 10.1038/382133a0. [DOI] [PubMed] [Google Scholar]
  9. Liu X., Grammont M., Irvine K. D. Roles for scalloped and vestigial in regulating cell affinity and interactions between the wing blade and the wing hinge. Dev Biol. 2000 Dec 15;228(2):287–303. doi: 10.1006/dbio.2000.9939. [DOI] [PubMed] [Google Scholar]
  10. Papayannopoulos V., Tomlinson A., Panin V. M., Rauskolb C., Irvine K. D. Dorsal-ventral signaling in the Drosophila eye. Science. 1998 Sep 25;281(5385):2031–2034. doi: 10.1126/science.281.5385.2031. [DOI] [PubMed] [Google Scholar]
  11. Paumard-Rigal S., Zider A., Vaudin P., Silber J. Specific interactions between vestigial and scalloped are required to promote wing tissue proliferation in Drosophila melanogaster. Dev Genes Evol. 1998 Oct;208(8):440–446. doi: 10.1007/s004270050201. [DOI] [PubMed] [Google Scholar]
  12. Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 1996;266:525–539. doi: 10.1016/s0076-6879(96)66033-9. [DOI] [PubMed] [Google Scholar]
  13. Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
  14. Rubin G. M., Spradling A. C. Vectors for P element-mediated gene transfer in Drosophila. Nucleic Acids Res. 1983 Sep 24;11(18):6341–6351. doi: 10.1093/nar/11.18.6341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Simmonds A. J., Liu X., Soanes K. H., Krause H. M., Irvine K. D., Bell J. B. Molecular interactions between Vestigial and Scalloped promote wing formation in Drosophila. Genes Dev. 1998 Dec 15;12(24):3815–3820. doi: 10.1101/gad.12.24.3815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Simmonds A., Hughes S., Tse J., Cocquyt S., Bell J. The effect of dominant vestigial alleles upon vestigial-mediated wing patterning during development of Drosophila melanogaster. Mech Dev. 1997 Sep;67(1):17–33. doi: 10.1016/s0925-4773(97)00096-8. [DOI] [PubMed] [Google Scholar]
  17. Srivastava Ajay, MacKay Julie O., Bell John B. A Vestigial:Scalloped TEA domain chimera rescues the wing phenotype of a scalloped mutation in Drosophila melanogaster. Genesis. 2002 May;33(1):40–47. doi: 10.1002/gene.10086. [DOI] [PubMed] [Google Scholar]
  18. Struhl G., Fitzgerald K., Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell. 1993 Jul 30;74(2):331–345. doi: 10.1016/0092-8674(93)90424-o. [DOI] [PubMed] [Google Scholar]
  19. Vaudin P., Delanoue R., Davidson I., Silber J., Zider A. TONDU (TDU), a novel human protein related to the product of vestigial (vg) gene of Drosophila melanogaster interacts with vertebrate TEF factors and substitutes for Vg function in wing formation. Development. 1999 Nov;126(21):4807–4816. doi: 10.1242/dev.126.21.4807. [DOI] [PubMed] [Google Scholar]
  20. Vidal M., Legrain P. Yeast forward and reverse 'n'-hybrid systems. Nucleic Acids Res. 1999 Feb 15;27(4):919–929. doi: 10.1093/nar/27.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  22. Williams J. A., Bell J. B., Carroll S. B. Control of Drosophila wing and haltere development by the nuclear vestigial gene product. Genes Dev. 1991 Dec;5(12B):2481–2495. doi: 10.1101/gad.5.12b.2481. [DOI] [PubMed] [Google Scholar]
  23. Williams J. A., Paddock S. W., Carroll S. B. Pattern formation in a secondary field: a hierarchy of regulatory genes subdivides the developing Drosophila wing disc into discrete subregions. Development. 1993 Feb;117(2):571–584. doi: 10.1242/dev.117.2.571. [DOI] [PubMed] [Google Scholar]
  24. Williams J. A., Scott I. M., Atkin A. L., Brook W. J., Russell M. A., Bell J. B. Genetic and molecular analysis of vgU and vgW: two dominant vg alleles associated with gene fusions in Drosophila. Genetics. 1990 Aug;125(4):833–844. doi: 10.1093/genetics/125.4.833. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES