Skip to main content
Genetics logoLink to Genetics
. 2003 May;164(1):209–222. doi: 10.1093/genetics/164.1.209

Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster.

Upendra Nongthomba 1, Mark Cummins 1, Samantha Clark 1, Jim O Vigoreaux 1, John C Sparrow 1
PMCID: PMC1462538  PMID: 12750333

Abstract

The indirect flight muscles (IFM) of Drosophila melanogaster provide a good genetic system with which to investigate muscle function. Flight muscle contraction is regulated by both stretch and Ca(2+)-induced thin filament (actin + tropomyosin + troponin complex) activation. Some mutants in troponin-I (TnI) and troponin-T (TnT) genes cause a "hypercontraction" muscle phenotype, suggesting that this condition arises from defects in Ca(2+) regulation and actomyosin-generated tension. We have tested the hypothesis that missense mutations of the myosin heavy chain gene, Mhc, which suppress the hypercontraction of the TnI mutant held-up(2) (hdp(2)), do so by reducing actomyosin force production. Here we show that a "headless" Mhc transgenic fly construct that reduces the myosin head concentration in the muscle thick filaments acts as a dose-dependent suppressor of hypercontracting alleles of TnI, TnT, Mhc, and flightin genes. The data suggest that most, if not all, mutants causing hypercontraction require actomyosin-produced forces to do so. Whether all Mhc suppressors act simply by reducing the force production of the thick filament is discussed with respect to current models of myosin function and thin filament activation by the binding of calcium to the troponin complex.

Full Text

The Full Text of this article is available as a PDF (596.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An H. S., Mogami K. Isolation of 88F actin mutants of Drosophila melanogaster and possible alterations in the mutant actin structures. J Mol Biol. 1996 Jul 26;260(4):492–505. doi: 10.1006/jmbi.1996.0417. [DOI] [PubMed] [Google Scholar]
  2. Barbas J. A., Galceran J., Torroja L., Prado A., Ferrús A. Abnormal muscle development in the heldup3 mutant of Drosophila melanogaster is caused by a splicing defect affecting selected troponin I isoforms. Mol Cell Biol. 1993 Mar;13(3):1433–1439. doi: 10.1128/mcb.13.3.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barthmaier P., Fyrberg E. Monitoring development and pathology of Drosophila indirect flight muscles using green fluorescent protein. Dev Biol. 1995 Jun;169(2):770–774. doi: 10.1006/dbio.1995.1186. [DOI] [PubMed] [Google Scholar]
  4. Beall C. J., Fyrberg E. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol. 1991 Sep;114(5):941–951. doi: 10.1083/jcb.114.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhatti S., Zimmer G., Bereiter-Hahn J. Enzyme release from chick myocytes during hypoxia and reoxygenation: dependence on pH. J Mol Cell Cardiol. 1989 Oct;21(10):995–1008. doi: 10.1016/0022-2828(89)90798-0. [DOI] [PubMed] [Google Scholar]
  6. Coonar A. S., McKenna W. J. Molecular genetics of familial cardiomyopathies. Adv Genet. 1997;35:285–324. doi: 10.1016/s0065-2660(08)60453-8. [DOI] [PubMed] [Google Scholar]
  7. Cozzi F., Cerletti M., Luvoni G. C., Lombardo R., Brambilla P. G., Faverzani S., Blasevich F., Cornelio F., Pozza O., Mora M. Development of muscle pathology in canine X-linked muscular dystrophy. II. Quantitative characterization of histopathological progression during postnatal skeletal muscle development. Acta Neuropathol. 2001 May;101(5):469–478. doi: 10.1007/s004010000308. [DOI] [PubMed] [Google Scholar]
  8. Cripps R. M., Becker K. D., Mardahl M., Kronert W. A., Hodges D., Bernstein S. I. Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression. J Cell Biol. 1994 Aug;126(3):689–699. doi: 10.1083/jcb.126.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cripps R. M., Suggs J. A., Bernstein S. I. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. EMBO J. 1999 Apr 1;18(7):1793–1804. doi: 10.1093/emboj/18.7.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cuda G., Fananapazir L., Zhu W. S., Sellers J. R., Epstein N. D. Skeletal muscle expression and abnormal function of beta-myosin in hypertrophic cardiomyopathy. J Clin Invest. 1993 Jun;91(6):2861–2865. doi: 10.1172/JCI116530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finol H. J., Márquez A., Navas E., de Navas N. R. Extraocular muscle ultrastructural pathology in the paraneoplastic phenomenon associated with retinoblastoma. J Exp Clin Cancer Res. 2001 Jun;20(2):281–285. [PubMed] [Google Scholar]
  12. García-Añoveros J., García J. A., Liu J. D., Corey D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron. 1998 Jun;20(6):1231–1241. doi: 10.1016/s0896-6273(00)80503-6. [DOI] [PubMed] [Google Scholar]
  13. George E. L., Ober M. B., Emerson C. P., Jr Functional domains of the Drosophila melanogaster muscle myosin heavy-chain gene are encoded by alternatively spliced exons. Mol Cell Biol. 1989 Jul;9(7):2957–2974. doi: 10.1128/mcb.9.7.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gordon A. M., Homsher E., Regnier M. Regulation of contraction in striated muscle. Physiol Rev. 2000 Apr;80(2):853–924. doi: 10.1152/physrev.2000.80.2.853. [DOI] [PubMed] [Google Scholar]
  15. Korswagen H. C., Park J. H., Ohshima Y., Plasterk R. H. An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev. 1997 Jun 15;11(12):1493–1503. doi: 10.1101/gad.11.12.1493. [DOI] [PubMed] [Google Scholar]
  16. Kronert W. A., Acebes A., Ferrús A., Bernstein S. I. Specific myosin heavy chain mutations suppress troponin I defects in Drosophila muscles. J Cell Biol. 1999 Mar 8;144(5):989–1000. doi: 10.1083/jcb.144.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kronert W. A., O'Donnell P. T., Fieck A., Lawn A., Vigoreaux J. O., Sparrow J. C., Bernstein S. I. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol. 1995 May 26;249(1):111–125. doi: 10.1006/jmbi.1995.0283. [DOI] [PubMed] [Google Scholar]
  18. Lankford E. B., Epstein N. D., Fananapazir L., Sweeney H. L. Abnormal contractile properties of muscle fibers expressing beta-myosin heavy chain gene mutations in patients with hypertrophic cardiomyopathy. J Clin Invest. 1995 Mar;95(3):1409–1414. doi: 10.1172/JCI117795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehrer S. S., Geeves M. A. The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol. 1998 Apr 17;277(5):1081–1089. doi: 10.1006/jmbi.1998.1654. [DOI] [PubMed] [Google Scholar]
  20. McKillop D. F., Geeves M. A. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J. 1993 Aug;65(2):693–701. doi: 10.1016/S0006-3495(93)81110-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Monticello T. M., Sargent C. A., McGill J. R., Barton D. S., Grover G. J. Amelioration of ischemia/reperfusion injury in isolated rats hearts by the ATP-sensitive potassium channel opener BMS-180448. Cardiovasc Res. 1996 Jan;31(1):93–101. [PubMed] [Google Scholar]
  22. Naimi B., Harrison A., Cummins M., Nongthomba U., Clark S., Canal I., Ferrus A., Sparrow J. C. A tropomyosin-2 mutation suppresses a troponin I myopathy in Drosophila. Mol Biol Cell. 2001 May;12(5):1529–1539. doi: 10.1091/mbc.12.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nongthomba U., Ramachandra N. B. A direct screen identifies new flight muscle mutants on the Drosophila second chromosome. Genetics. 1999 Sep;153(1):261–274. doi: 10.1093/genetics/153.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Donnell P. T., Bernstein S. I. Molecular and ultrastructural defects in a Drosophila myosin heavy chain mutant: differential effects on muscle function produced by similar thick filament abnormalities. J Cell Biol. 1988 Dec;107(6 Pt 2):2601–2612. doi: 10.1083/jcb.107.6.2601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palmiter K. A., Tyska M. J., Haeberle J. R., Alpert N. R., Fananapazir L., Warshaw D. M. R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil. 2000;21(7):609–620. doi: 10.1023/a:1005678905119. [DOI] [PubMed] [Google Scholar]
  26. Prado A., Canal I., Barbas J. A., Molloy J., Ferrús A. Functional recovery of troponin I in a Drosophila heldup mutant after a second site mutation. Mol Biol Cell. 1995 Nov;6(11):1433–1441. doi: 10.1091/mbc.6.11.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rayment I., Holden H. M., Sellers J. R., Fananapazir L., Epstein N. D. Structural interpretation of the mutations in the beta-cardiac myosin that have been implicated in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3864–3868. doi: 10.1073/pnas.92.9.3864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rayment I., Rypniewski W. R., Schmidt-Bäse K., Smith R., Tomchick D. R., Benning M. M., Winkelmann D. A., Wesenberg G., Holden H. M. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science. 1993 Jul 2;261(5117):50–58. doi: 10.1126/science.8316857. [DOI] [PubMed] [Google Scholar]
  29. Razzaq A., Schmitz S., Veigel C., Molloy J. E., Geeves M. A., Sparrow J. C. Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem. 1999 Oct 1;274(40):28321–28328. doi: 10.1074/jbc.274.40.28321. [DOI] [PubMed] [Google Scholar]
  30. Redwood C. S., Moolman-Smook J. C., Watkins H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc Res. 1999 Oct;44(1):20–36. doi: 10.1016/s0008-6363(99)00213-8. [DOI] [PubMed] [Google Scholar]
  31. Reedy M. C., Beall C. Ultrastructure of developing flight muscle in Drosophila. I. Assembly of myofibrils. Dev Biol. 1993 Dec;160(2):443–465. doi: 10.1006/dbio.1993.1320. [DOI] [PubMed] [Google Scholar]
  32. Reedy M. C., Bullard B., Vigoreaux J. O. Flightin is essential for thick filament assembly and sarcomere stability in Drosophila flight muscles. J Cell Biol. 2000 Dec 25;151(7):1483–1500. doi: 10.1083/jcb.151.7.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rovner A. S., Freyzon Y., Trybus K. M. Chimeric substitutions of the actin-binding loop activate dephosphorylated but not phosphorylated smooth muscle heavy meromyosin. J Biol Chem. 1995 Dec 22;270(51):30260–30263. doi: 10.1074/jbc.270.51.30260. [DOI] [PubMed] [Google Scholar]
  34. Schmitz S., Clayton J., Nongthomba U., Prinz H., Veigel C., Geeves M., Sparrow J. Drosophila ACT88F indirect flight muscle-specific actin is not N-terminally acetylated: a mutation in N-terminal processing affects actin function. J Mol Biol. 2000 Feb 4;295(5):1201–1210. doi: 10.1006/jmbi.1999.3407. [DOI] [PubMed] [Google Scholar]
  35. Seidman J. G., Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001 Feb 23;104(4):557–567. doi: 10.1016/s0092-8674(01)00242-2. [DOI] [PubMed] [Google Scholar]
  36. Steward R., Nüsslein-Volhard C. The genetics of the dorsal-Bicaudal-D region of Drosophila melanogaster. Genetics. 1986 Jul;113(3):665–678. doi: 10.1093/genetics/113.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Swank D. M., Bartoo M. L., Knowles A. F., Iliffe C., Bernstein S. I., Molloy J. E., Sparrow J. C. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. J Biol Chem. 2000 Dec 27;276(18):15117–15124. doi: 10.1074/jbc.M008379200. [DOI] [PubMed] [Google Scholar]
  38. Swank Douglas M., Knowles Aileen F., Suggs Jennifer A., Sarsoza Floyd, Lee Annie, Maughan David W., Bernstein Sanford I. The myosin converter domain modulates muscle performance. Nat Cell Biol. 2002 Apr;4(4):312–316. doi: 10.1038/ncb776. [DOI] [PubMed] [Google Scholar]
  39. Uyeda T. Q., Ruppel K. M., Spudich J. A. Enzymatic activities correlate with chimaeric substitutions at the actin-binding face of myosin. Nature. 1994 Apr 7;368(6471):567–569. doi: 10.1038/368567a0. [DOI] [PubMed] [Google Scholar]
  40. Vassylyev D. G., Takeda S., Wakatsuki S., Maeda K., Maéda Y. Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4847–4852. doi: 10.1073/pnas.95.9.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vigoreaux J. O. Genetics of the Drosophila flight muscle myofibril: a window into the biology of complex systems. Bioessays. 2001 Nov;23(11):1047–1063. doi: 10.1002/bies.1150. [DOI] [PubMed] [Google Scholar]
  42. Vigoreaux J. O., Saide J. D., Valgeirsdottir K., Pardue M. L. Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol. 1993 May;121(3):587–598. doi: 10.1083/jcb.121.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamashita H., Tyska M. J., Warshaw D. M., Lowey S., Trybus K. M. Functional consequences of mutations in the smooth muscle myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. J Biol Chem. 2000 Sep 8;275(36):28045–28052. doi: 10.1074/jbc.M005485200. [DOI] [PubMed] [Google Scholar]
  44. Zhang S., Bernstein S. I. Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. Mech Dev. 2001 Mar;101(1-2):35–45. doi: 10.1016/s0925-4773(00)00549-9. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES