Skip to main content
Genetics logoLink to Genetics
. 2003 May;164(1):47–64. doi: 10.1093/genetics/164.1.47

Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair.

Holly R Wyatt 1, Hungjiun Liaw 1, George R Green 1, Arthur J Lustig 1
PMCID: PMC1462545  PMID: 12750320

Abstract

Telomere position effects on transcription (TPE, or telomeric silencing) are nucleated by association of nonhistone silencing factors with the telomere and propagated in subtelomeric regions through association of silencing factors with the specifically modified histones H3 and H4. However, the function of histone H2A in TPE is unknown. We found that deletion of either the amino or the carboxyltails of H2A substantially reduces TPE. We identified four H2A modification sites necessary for wild-type efficiency of TPE. These "hta1tpe" alleles also act as suppressors of a delta insertion allele of LYS2, suggesting shared elements of chromatin structure at both loci. Interestingly, we observed combinatorial effects of allele pairs, suggesting both interdependent acetylation and deacetylation events in the amino-terminal tail and a regulatory circuit between multiple phosphorylated residues in the carboxyl-terminal tail. Decreases in silencing and viability are observed in most hta1tpe alleles after treatment with low and high concentrations, respectively, of bleomycin, which forms double-strand breaks (DSBs). In the absence of the DSB and telomere-binding protein yKu70, the bleomycin sensitivity of hta1tpe alleles is further enhanced. We also provide data suggesting the presence of a yKu-dependent histone H2A function in TPE. These data indicate that the amino- and carboxyl-terminal tails of H2A are essential for wild-type levels of yKu-mediated TPE and DSB repair.

Full Text

The Full Text of this article is available as a PDF (725.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baur J. A., Zou Y., Shay J. W., Wright W. E. Telomere position effect in human cells. Science. 2001 Jun 15;292(5524):2075–2077. doi: 10.1126/science.1062329. [DOI] [PubMed] [Google Scholar]
  2. Bortvin A., Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science. 1996 Jun 7;272(5267):1473–1476. doi: 10.1126/science.272.5267.1473. [DOI] [PubMed] [Google Scholar]
  3. Boulton S. J., Jackson S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 1998 Mar 16;17(6):1819–1828. doi: 10.1093/emboj/17.6.1819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Briggs S. D., Bryk M., Strahl B. D., Cheung W. L., Davie J. K., Dent S. Y., Winston F., Allis C. D. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 2001 Dec 15;15(24):3286–3295. doi: 10.1101/gad.940201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carmen A. A., Griffin P. R., Calaycay J. R., Rundlett S. E., Suka Y., Grunstein M. Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity. Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12356–12361. doi: 10.1073/pnas.96.22.12356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carmen Andrew A., Milne Lisa, Grunstein Michael. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J Biol Chem. 2001 Nov 19;277(7):4778–4781. doi: 10.1074/jbc.M110532200. [DOI] [PubMed] [Google Scholar]
  7. Clark-Adams C. D., Norris D., Osley M. A., Fassler J. S., Winston F. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 1988 Feb;2(2):150–159. doi: 10.1101/gad.2.2.150. [DOI] [PubMed] [Google Scholar]
  8. Clark-Adams C. D., Winston F. The SPT6 gene is essential for growth and is required for delta-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Feb;7(2):679–686. doi: 10.1128/mcb.7.2.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarke A. S., Lowell J. E., Jacobson S. J., Pillus L. Esa1p is an essential histone acetyltransferase required for cell cycle progression. Mol Cell Biol. 1999 Apr;19(4):2515–2526. doi: 10.1128/mcb.19.4.2515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cockell M., Gotta M., Palladino F., Martin S. G., Gasser S. M. Targeting Sir proteins to sites of action: a general mechanism for regulated repression. Cold Spring Harb Symp Quant Biol. 1998;63:401–412. doi: 10.1101/sqb.1998.63.401. [DOI] [PubMed] [Google Scholar]
  11. Cockell M., Renauld H., Watt P., Gasser S. M. Sif2p interacts with Sir4p amino-terminal domain and antagonizes telomeric silencing in yeast. Curr Biol. 1998 Jun 18;8(13):787–790. doi: 10.1016/s0960-9822(98)70304-5. [DOI] [PubMed] [Google Scholar]
  12. Dhillon N., Kamakaka R. T. A histone variant, Htz1p, and a Sir1p-like protein, Esc2p, mediate silencing at HMR. Mol Cell. 2000 Oct;6(4):769–780. doi: 10.1016/s1097-2765(00)00076-9. [DOI] [PubMed] [Google Scholar]
  13. Dimova D., Nackerdien Z., Furgeson S., Eguchi S., Osley M. A. A role for transcriptional repressors in targeting the yeast Swi/Snf complex. Mol Cell. 1999 Jul;4(1):75–83. doi: 10.1016/s1097-2765(00)80189-6. [DOI] [PubMed] [Google Scholar]
  14. Evans S. K., Sistrunk M. L., Nugent C. I., Lundblad V. Telomerase, Ku, and telomeric silencing in Saccharomyces cerevisiae. Chromosoma. 1998 Dec;107(6-7):352–358. doi: 10.1007/s004120050318. [DOI] [PubMed] [Google Scholar]
  15. Formosa T., Eriksson P., Wittmeyer J., Ginn J., Yu Y., Stillman D. J. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J. 2001 Jul 2;20(13):3506–3517. doi: 10.1093/emboj/20.13.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fusauchi Y., Iwai K. Tetrahymena histone H2A. Acetylation in the N-terminal sequence and phosphorylation in the C-terminal sequence. J Biochem. 1984 Jan;95(1):147–154. doi: 10.1093/oxfordjournals.jbchem.a134578. [DOI] [PubMed] [Google Scholar]
  17. Galarneau L., Nourani A., Boudreault A. A., Zhang Y., Héliot L., Allard S., Savard J., Lane W. S., Stillman D. J., Côté J. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell. 2000 Jun;5(6):927–937. doi: 10.1016/s1097-2765(00)80258-0. [DOI] [PubMed] [Google Scholar]
  18. Goll Mary Grace, Bestor Timothy H. Histone modification and replacement in chromatin activation. Genes Dev. 2002 Jul 15;16(14):1739–1742. doi: 10.1101/gad.1013902. [DOI] [PubMed] [Google Scholar]
  19. Gottschling D. E., Aparicio O. M., Billington B. L., Zakian V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 1990 Nov 16;63(4):751–762. doi: 10.1016/0092-8674(90)90141-z. [DOI] [PubMed] [Google Scholar]
  20. Green G. R., Gustavsen L. C., Poccia D. L. Phosphorylation of Plant H2A Histones. Plant Physiol. 1990 Jul;93(3):1241–1245. doi: 10.1104/pp.93.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Green G. R., Poccia D. L. Phosphorylation of sea urchin histone CS H2A. Dev Biol. 1989 Aug;134(2):413–419. doi: 10.1016/0012-1606(89)90113-9. [DOI] [PubMed] [Google Scholar]
  22. Grunstein M. Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol. 1997 Jun;9(3):383–387. doi: 10.1016/s0955-0674(97)80011-7. [DOI] [PubMed] [Google Scholar]
  23. Grunstein M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell. 1998 May 1;93(3):325–328. doi: 10.1016/s0092-8674(00)81160-5. [DOI] [PubMed] [Google Scholar]
  24. Hecht A., Laroche T., Strahl-Bolsinger S., Gasser S. M., Grunstein M. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell. 1995 Feb 24;80(4):583–592. doi: 10.1016/0092-8674(95)90512-x. [DOI] [PubMed] [Google Scholar]
  25. Hirschhorn J. N., Bortvin A. L., Ricupero-Hovasse S. L., Winston F. A new class of histone H2A mutations in Saccharomyces cerevisiae causes specific transcriptional defects in vivo. Mol Cell Biol. 1995 Apr;15(4):1999–2009. doi: 10.1128/mcb.15.4.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ho Yuen, Gruhler Albrecht, Heilbut Adrian, Bader Gary D., Moore Lynda, Adams Sally-Lin, Millar Anna, Taylor Paul, Bennett Keiryn, Boutilier Kelly. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002 Jan 10;415(6868):180–183. doi: 10.1038/415180a. [DOI] [PubMed] [Google Scholar]
  27. Hoppe Georg J., Tanny Jason C., Rudner Adam D., Gerber Scott A., Danaie Sherwin, Gygi Steven P., Moazed Danesh. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol Cell Biol. 2002 Jun;22(12):4167–4180. doi: 10.1128/MCB.22.12.4167-4180.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Imai S., Armstrong C. M., Kaeberlein M., Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000 Feb 17;403(6771):795–800. doi: 10.1038/35001622. [DOI] [PubMed] [Google Scholar]
  29. Jackson J. D., Gorovsky M. A. Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res. 2000 Oct 1;28(19):3811–3816. doi: 10.1093/nar/28.19.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jenuwein T., Allis C. D. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. doi: 10.1126/science.1063127. [DOI] [PubMed] [Google Scholar]
  31. John S., Howe L., Tafrov S. T., Grant P. A., Sternglanz R., Workman J. L. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 2000 May 15;14(10):1196–1208. [PMC free article] [PubMed] [Google Scholar]
  32. Krawitz Denise C., Kama Tamar, Kaufman Paul D. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol. 2002 Jan;22(2):614–625. doi: 10.1128/MCB.22.2.614-625.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Krogan Nevan J., Dover Jim, Khorrami Shahram, Greenblatt Jack F., Schneider Jessica, Johnston Mark, Shilatifard Ali. COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem. 2002 Jan 22;277(13):10753–10755. doi: 10.1074/jbc.C200023200. [DOI] [PubMed] [Google Scholar]
  34. Kyrion G., Liu K., Liu C., Lustig A. J. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 1993 Jul;7(7A):1146–1159. doi: 10.1101/gad.7.7a.1146. [DOI] [PubMed] [Google Scholar]
  35. Lachner M., O'Carroll D., Rea S., Mechtler K., Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001 Mar 1;410(6824):116–120. doi: 10.1038/35065132. [DOI] [PubMed] [Google Scholar]
  36. Landry J., Sutton A., Tafrov S. T., Heller R. C., Stebbins J., Pillus L., Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807–5811. doi: 10.1073/pnas.110148297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Laroche T., Martin S. G., Gotta M., Gorham H. C., Pryde F. E., Louis E. J., Gasser S. M. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol. 1998 May 21;8(11):653–656. doi: 10.1016/s0960-9822(98)70252-0. [DOI] [PubMed] [Google Scholar]
  38. Lenfant F., Mann R. K., Thomsen B., Ling X., Grunstein M. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J. 1996 Aug 1;15(15):3974–3985. [PMC free article] [PubMed] [Google Scholar]
  39. Liu C., Mao X., Lustig A. J. Mutational analysis defines a C-terminal tail domain of RAP1 essential for Telomeric silencing in Saccharomyces cerevisiae. Genetics. 1994 Dec;138(4):1025–1040. doi: 10.1093/genetics/138.4.1025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  41. Luo Kunheng, Vega-Palas Miguel A., Grunstein Michael. Rap1-Sir4 binding independent of other Sir, yKu, or histone interactions initiates the assembly of telomeric heterochromatin in yeast. Genes Dev. 2002 Jun 15;16(12):1528–1539. doi: 10.1101/gad.988802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lustig A. J. Mechanisms of silencing in Saccharomyces cerevisiae. Curr Opin Genet Dev. 1998 Apr;8(2):233–239. doi: 10.1016/s0959-437x(98)80146-9. [DOI] [PubMed] [Google Scholar]
  43. Mages G. J., Feldmann H. M., Winnacker E. L. Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem. 1996 Apr 5;271(14):7910–7915. doi: 10.1074/jbc.271.14.7910. [DOI] [PubMed] [Google Scholar]
  44. Martin S. G., Laroche T., Suka N., Grunstein M., Gasser S. M. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 1999 May 28;97(5):621–633. doi: 10.1016/s0092-8674(00)80773-4. [DOI] [PubMed] [Google Scholar]
  45. McAinsh A. D., Scott-Drew S., Murray J. A., Jackson S. P. DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Curr Biol. 1999 Sep 9;9(17):963–966. doi: 10.1016/s0960-9822(99)80424-2. [DOI] [PubMed] [Google Scholar]
  46. Milne G. T., Jin S., Shannon K. B., Weaver D. T. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Aug;16(8):4189–4198. doi: 10.1128/mcb.16.8.4189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Moazed D., Johnson D. A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S. cerevisiae. Cell. 1996 Aug 23;86(4):667–677. doi: 10.1016/s0092-8674(00)80139-7. [DOI] [PubMed] [Google Scholar]
  48. Monson E. K., de Bruin D., Zakian V. A. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13081–13086. doi: 10.1073/pnas.94.24.13081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Moore C. W. Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Cancer Res. 1989 Dec 15;49(24 Pt 1):6935–6940. [PubMed] [Google Scholar]
  50. Moore C. W., McKoy J., Dardalhon M., Davermann D., Martinez M., Averbeck D. DNA damage-inducible and RAD52-independent repair of DNA double-strand breaks in Saccharomyces cerevisiae. Genetics. 2000 Mar;154(3):1085–1099. doi: 10.1093/genetics/154.3.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ohba R., Steger D. J., Brownell J. E., Mizzen C. A., Cook R. G., Côté J., Workman J. L., Allis C. D. A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila. Mol Cell Biol. 1999 Mar;19(3):2061–2068. doi: 10.1128/mcb.19.3.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Park Y., Lustig A. J. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics. 2000 Feb;154(2):587–598. doi: 10.1093/genetics/154.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Pokholok Dmitry K., Hannett Nancy M., Young Richard A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell. 2002 Apr;9(4):799–809. doi: 10.1016/s1097-2765(02)00502-6. [DOI] [PubMed] [Google Scholar]
  54. Porter S. E., Greenwell P. W., Ritchie K. B., Petes T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 1996 Feb 15;24(4):582–585. doi: 10.1093/nar/24.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Recht J., Dunn B., Raff A., Osley M. A. Functional analysis of histones H2A and H2B in transcriptional repression in Saccharomyces cerevisiae. Mol Cell Biol. 1996 Jun;16(6):2545–2553. doi: 10.1128/mcb.16.6.2545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Recht J., Osley M. A. Mutations in both the structured domain and N-terminus of histone H2B bypass the requirement for Swi-Snf in yeast. EMBO J. 1999 Jan 4;18(1):229–240. doi: 10.1093/emboj/18.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Redon Christophe, Pilch Duane, Rogakou Emmy, Sedelnikova Olga, Newrock Kenneth, Bonner William. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev. 2002 Apr;12(2):162–169. doi: 10.1016/s0959-437x(02)00282-4. [DOI] [PubMed] [Google Scholar]
  58. Renauld H., Aparicio O. M., Zierath P. D., Billington B. L., Chhablani S. K., Gottschling D. E. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 1993 Jul;7(7A):1133–1145. doi: 10.1101/gad.7.7a.1133. [DOI] [PubMed] [Google Scholar]
  59. Roy A., Exinger F., Losson R. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol. 1990 Oct;10(10):5257–5270. doi: 10.1128/mcb.10.10.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Santisteban M. S., Kalashnikova T., Smith M. M. Histone H2A.Z regulats transcription and is partially redundant with nucleosome remodeling complexes. Cell. 2000 Oct 27;103(3):411–422. doi: 10.1016/s0092-8674(00)00133-1. [DOI] [PubMed] [Google Scholar]
  61. Sekinger E. A., Gross D. S. Silenced chromatin is permissive to activator binding and PIC recruitment. Cell. 2001 May 4;105(3):403–414. doi: 10.1016/s0092-8674(01)00329-4. [DOI] [PubMed] [Google Scholar]
  62. Sharp J. A., Fouts E. T., Krawitz D. C., Kaufman P. D. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol. 2001 Apr 3;11(7):463–473. doi: 10.1016/s0960-9822(01)00140-3. [DOI] [PubMed] [Google Scholar]
  63. Sherwood P. W., Tsang S. V., Osley M. A. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jan;13(1):28–38. doi: 10.1128/mcb.13.1.28. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Suka N., Suka Y., Carmen A. A., Wu J., Grunstein M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell. 2001 Aug;8(2):473–479. doi: 10.1016/s1097-2765(01)00301-x. [DOI] [PubMed] [Google Scholar]
  65. Swanson M. S., Malone E. A., Winston F. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol Cell Biol. 1991 Jun;11(6):3009–3019. doi: 10.1128/mcb.11.6.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Venditti S., Vega-Palas M. A., Di Mauro E. Heterochromatin organization of a natural yeast telomere. Recruitment of Sir3p through interaction with histone H4 N terminus is required for the establishment of repressive structures. J Biol Chem. 1999 Jan 22;274(4):1928–1933. doi: 10.1074/jbc.274.4.1928. [DOI] [PubMed] [Google Scholar]
  67. Vogelauer M., Wu J., Suka N., Grunstein M. Global histone acetylation and deacetylation in yeast. Nature. 2000 Nov 23;408(6811):495–498. doi: 10.1038/35044127. [DOI] [PubMed] [Google Scholar]
  68. Ward I. M., Chen J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J Biol Chem. 2001 Oct 22;276(51):47759–47762. doi: 10.1074/jbc.C100569200. [DOI] [PubMed] [Google Scholar]
  69. White D. A., Belyaev N. D., Turner B. M. Preparation of site-specific antibodies to acetylated histones. Methods. 1999 Nov;19(3):417–424. doi: 10.1006/meth.1999.0878. [DOI] [PubMed] [Google Scholar]
  70. Wittmeyer J., Joss L., Formosa T. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry. 1999 Jul 13;38(28):8961–8971. doi: 10.1021/bi982851d. [DOI] [PubMed] [Google Scholar]
  71. Wright J. H., Gottschling D. E., Zakian V. A. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes Dev. 1992 Feb;6(2):197–210. doi: 10.1101/gad.6.2.197. [DOI] [PubMed] [Google Scholar]
  72. Yamaguchi Y., Narita T., Inukai N., Wada T., Handa H. SPT genes: key players in the regulation of transcription, chromatin structure and other cellular processes. J Biochem. 2001 Feb;129(2):185–191. doi: 10.1093/oxfordjournals.jbchem.a002842. [DOI] [PubMed] [Google Scholar]
  73. de Bruin D., Kantrow S. M., Liberatore R. A., Zakian V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol Cell Biol. 2000 Nov;20(21):7991–8000. doi: 10.1128/mcb.20.21.7991-8000.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. de Bruin D., Zaman Z., Liberatore R. A., Ptashne M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature. 2001 Jan 4;409(6816):109–113. doi: 10.1038/35051119. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES