Abstract
Understanding of the evolutionary histories of many genes has not yet allowed us to predict the evolutionary potential of those genes. Intuition suggests that current biochemical activity of gene products should be a good predictor of the potential to evolve related activities; however, we have little evidence to support that intuition. Here we use our in vitro evolution method to evaluate biochemical activity as a predictor of future evolutionary potential. Neither the class C Citrobacter freundii CMY-2 AmpC beta-lactamase nor the class A TEM-1 beta-lactamase confer resistance to the beta-lactam antibiotic cefepime, nor do any of the naturally occurring alleles descended from them. However, the CMY-2 AmpC enzyme and some alleles descended from TEM-1 confer high-level resistance to the structurally similar ceftazidime. On the basis of the comparison of TEM-1 and CMY-2, we asked whether biochemical activity is a good predictor of the evolutionary potential of an enzyme. If it is, then CMY-2 should be more able than the TEMs to evolve the ability to confer higher levels of cefepime resistance. Although we generated CMY-2 evolvants that conferred increased cefepime resistance, we did not recover any CMY-2 evolvants that conferred resistance levels as high as the best cefepime-resistant TEM alleles.
Full Text
The Full Text of this article is available as a PDF (71.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
- Barlow Miriam, Hall Barry G. Experimental prediction of the natural evolution of antibiotic resistance. Genetics. 2003 Apr;163(4):1237–1241. doi: 10.1093/genetics/163.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow Miriam, Hall Barry G. Origin and evolution of the AmpC beta-lactamases of Citrobacter freundii. Antimicrob Agents Chemother. 2002 May;46(5):1190–1198. doi: 10.1128/AAC.46.5.1190-1198.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow Miriam, Hall Barry G. Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase. Genetics. 2002 Mar;160(3):823–832. doi: 10.1093/genetics/160.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauernfeind A., Chong Y., Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989 Sep-Oct;17(5):316–321. doi: 10.1007/BF01650718. [DOI] [PubMed] [Google Scholar]
- Hall B. G. Evolutionary potential of the ebgA gene. Mol Biol Evol. 1995 May;12(3):514–517. doi: 10.1093/oxfordjournals.molbev.a040225. [DOI] [PubMed] [Google Scholar]
- Hall B. G. Predicting evolutionary potential. I. Predicting the evolution of a lactose-PTS system in Escherichia coli. Mol Biol Evol. 2001 Jul;18(7):1389–1400. doi: 10.1093/oxfordjournals.molbev.a003923. [DOI] [PubMed] [Google Scholar]
- Hall Barry G. Predicting evolution by in vitro evolution requires determining evolutionary pathways. Antimicrob Agents Chemother. 2002 Sep;46(9):3035–3038. doi: 10.1128/AAC.46.9.3035-3038.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knox J. R. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother. 1995 Dec;39(12):2593–2601. doi: 10.1128/aac.39.12.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeBlanc D. J., Mortlock R. P. Metabolism of D-arabinose: a new pathway in Escherichia coli. J Bacteriol. 1971 Apr;106(1):90–96. doi: 10.1128/jb.106.1.90-96.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medeiros A. A. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis. 1997 Jan;24 (Suppl 1):S19–S45. doi: 10.1093/clinids/24.supplement_1.s19. [DOI] [PubMed] [Google Scholar]
- Mortlock R. P., Fossitt D. D., Wood W. A. A basis for utlization of unnatural pentoses and pentitols by Aerobacter aerogenes. Proc Natl Acad Sci U S A. 1965 Aug;54(2):572–579. doi: 10.1073/pnas.54.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stemmer W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 1994 Aug 4;370(6488):389–391. doi: 10.1038/370389a0. [DOI] [PubMed] [Google Scholar]
- Vakulenko S. B., Geryk B., Kotra L. P., Mobashery S., Lerner S. A. Selection and characterization of beta-lactam-beta-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 beta-lactamase gene. Antimicrob Agents Chemother. 1998 Jul;42(7):1542–1548. doi: 10.1128/aac.42.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vakulenko Sergei B., Golemi Dasantila, Geryk Bruce, Suvorov Maxim, Knox James R., Mobashery Shahriar, Lerner Stephen A. Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 beta-lactamase confers increased MIC of cefepime. Antimicrob Agents Chemother. 2002 Jun;46(6):1966–1970. doi: 10.1128/AAC.46.6.1966-1970.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]